Machine Learning

Volker Roth

Department of Mathematics \& Computer Science
University of Basel

Chapter 2: Generative models for discrete data

- Foundations of Bayesian inference
- Bayesian concept learning: the number game
- The beta-binomial model: tossing coins
- The Dirichlet-multinomial model: rolling dice
- Example: Simple language models

Bayesian concept learning

- Consider how a child learns the meaning of the word dog.
- Presumably from positive examples, like "look at the cute dog!"
- Negative examples much less likely, "look at that non-dog" (?)

Image by rawpixel.com on Freepik

Image by jcomp on Freepik

Image by wirestock on Freepik

- Psychological research has shown that people can learn concepts from positive examples alone.
- Learning meaning of a word $=$ concept learning $=$ binary classification: $f(x)=1$ if x is example of concept C, and 0 otherwise.
- Standard classification requires positive and negative examples... Bayesian concept learning uses positive examples alone.

The number game (Tenenbaum 1999)

- I choose some arithmetical concept C, such as "prime number" or "powers of two". I give you a (random) series of positive examples $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$ drawn from C.
Question: does new \tilde{x} belong to C ?
- Variation of a common typ of questions in elementary school:

Übungsblatt: Zahlenfolgen bis 100-BI. 1
$87,86,85,84$, \qquad
\qquad
\qquad , \qquad ,

Regel: \qquad

20, 21, 22, 23, \qquad , _-_-_-_, \qquad
\qquad ,

Regel: \qquad
http://aufgaben.schulkreis.de

The number game

- Consider integers in [1, 100]. I tell you 16 is a positive example. What are other positive examples?
Difficult with only one example, predictions will be quite vague.
- Intuition: numbers similar to $\mathbf{1 6}$ are more likely.
- But what means similar? 17 (close by), 6 (one digit in common), 32 (also even and a power of 2), etc.
- Represent this as a probability distribution: $p(\tilde{x} \mid \mathcal{D})$: probability that $\tilde{x} \in C$ given \mathcal{D}.
\rightsquigarrow posterior predictive distribution.
- After seeing $\mathcal{D}=\{16,8,2,64\}$, you may guess that the concept is "powers of two".
- ...if instead I tell you $\mathcal{D}=\{16,23,19,20\} \ldots$
- How can we explain this behavior and emulate it in a machine?
- Suppose we have a hypothesis space of concepts, \mathcal{H}.

Examples

16

60

Figure 3.1 in K. Murphy, 2012. Empirical predictive distribution averaged over 8 humans in the number game. First two rows: after seeing $\mathcal{D}=\{16\}$ and $\mathcal{D}=\{60\}$. This illustrates diffuse similarity. Third row: after seeing $\mathcal{D}=\{16,8,2,64\}$. This illustrates rule-like behavior (powers of 2). Bottom row: after seeing $\mathcal{D}=\{16,23,19,20\} \rightsquigarrow$ focused similarity (numbers near 20)

The number game

- Version space: subset of \mathcal{H} that is consistent with \mathcal{D}.
- As we see more examples, the version space shrinks and we become increasingly certain about the concept.
Example: $\mathcal{H}=\{$ "even", "odd", "multiples of $4 "$ " "powers of two", "prime", "powers of 2 except for 32 " $\}$ $\mathcal{D}=\{16\}:\{$ "even", "odd", "multiples of 4", "powers of 2", "prime", "powers of 2 except 32" $\}$
$\mathcal{D}=\{16,8,2\}:\{$ "even", "odd", "multiples of 4", "powers of 2", "prime", "powers of 2 except 32" $\}$
- But: version space is not the whole story:
- After seeing $\mathcal{D}=\{16\}$, there are many consistent rules; how do you combine them to predict if $\tilde{x} \in C$?
- Also, after seeing $\mathcal{D}=\{16,8,2,64\}$, why did you choose the rule "powers of two" and not "all even numbers", or "powers of two except for 32 ", which are equally consistent with the evidence?
- Bayesian explanation.

The number game: Likelihood

- Having seen $\mathcal{D}=\{16,8,2,64\}$, we must explain why we chose $h_{\text {two }}=$ "powers of two", and not $h_{\text {even }}=$ "even numbers".
- Key intuition: want to avoid suspicious coincidences. If the true concept was $h_{\text {even }}$, how come we only saw powers of two?
- Formalization: assume that examples are sampled uniformly at random from the extension of a concept ($=$ set of numbers that belong to it), e.g. $h_{\text {even }}=\{2,4,6, \ldots, 100\}$.
"next number" dice

Probability of sampling x randomly from h :

$$
P(x \mid h)=\frac{1}{|h|}=\frac{1}{50} \quad \text { for } h=h_{\text {even }}
$$

Probability of independently sampling N
items (with replacement): $p(\mathcal{D} \mid h)=\left[\frac{1}{|h|}\right]^{N}$.

16 1/50

uniform probabilities concept specific faces "even" = \{2,4,6,8,...98,100\}

The number game: Likelihood

- Let $\mathcal{D}=\{16\} \rightsquigarrow p\left(\mathcal{D} \mid h_{\text {two }}\right)=1 / 6$, since there are 6 powers of two less than 100 , but $p\left(\mathcal{D} \mid h_{\text {even }}\right)=1 / 50$, since there are 50 even numbers.
- So the likelihood that $h=h_{\text {two }}$ is higher than if $h=h_{\text {even }}$.
- After 4 examples, $p\left(\mathcal{D} \mid h_{\text {two }}\right)=(1 / 6)^{4}, p\left(\mathcal{D} \mid h_{\text {even }}\right)=(1 / 50)^{4}$.
- This is a likelihood ratio of almost 5000:1 in favor of $h_{\text {two }}$.
- This quantifies our earlier intuition that $\mathcal{D}=\{16,8,2,64\}$ would be a very suspicious coincidence if generated by $h_{\text {even }}$.
- Size principle: the model favors the "simplest" hypothesis consistent with the data. Known as Occam's razor.
- William of Ockham (1287-1347):

When presented with competing hypotheses that make the same predictions, select the simplest one.

The number game: Prior

- Given $\mathcal{D}=\{16,8,2,64\}$, the concept

$$
h^{\prime}=\text { "powers of two except } 32 \text { " }
$$

is even more likely than

$$
h=\text { "powers of two", }
$$

since h^{\prime} does not need to explain the coincidence that 32 is missing.

- However, h^{\prime} seems "conceptually unnatural".
- Capture such intuition by assigning low prior probability to "unnatural" concepts.
- Your prior might be different than mine, and this subjective aspect of Bayesian reasoning is a source of much controversy.
- But priors are actually quite useful:
- If you are told the numbers are from some arithmetic rule, then given 1200,1500 , and 900 , you may think 400 is likely but 1183 is unlikely.
- But if you are told that the numbers are examples of healthy cholesterol levels, you would probably think 400 is unlikely and 1183 is likely.

The number game: Prior

- The prior is the mechanism to formalize background knowledge. Without this, rapid learning is impossible.
- Example: use a simple prior which puts uniform probability on 30 simple arithmetical concepts.
- To make things more interesting, we make the concepts "even" and "odd" more likely a priori.
- We also include two "unnatural" concepts, namely "powers of 2, plus 37 " and "powers of 2, except 32", but give them low prior weight.

From Figure 3.2 in K. Murphy: "Machine Learning", MIT Press, 2012. Prior.

Bayes Formula

Thomas Bayes (1701-61): English statistician, philosopher and Presbyterian minister.

The number game: Posterior

- The posterior is simply the likelihood times the prior, normalized:

$$
p(h \mid \mathcal{D})=\frac{1}{p(\mathcal{D})} p(\mathcal{D} \mid h) p(h)=\frac{p(h) \mathbb{I}(\mathcal{D} \in h) /|h|^{N}}{\sum_{h^{\prime} \in \mathcal{H}} p\left(h^{\prime}\right) \mathbb{I}\left(\mathcal{D} \in h^{\prime}\right) /\left|h^{\prime}\right|^{N}}
$$

where $\mathbb{I}(\mathcal{D} \in h)=1$ iff the data are in extension of hypothesis h.

- After seeing $\mathcal{D}=\{16,8,2,64\}$, the likelihood is much more peaked on the powers of two concept, so this dominates the posterior.
- In general, when we have enough data, the posterior $p(h \mid \mathcal{D})$ becomes peaked on a single concept, namely the MAP estimate

$$
p(h \mid \mathcal{D}) \rightarrow \delta_{\hat{h}^{\mathrm{MAP}}}(h),
$$

where

$$
\hat{h}^{\mathrm{MAP}}=\arg \max _{h} p(h \mid \mathcal{D})
$$

is the posterior mode, and δ is the Dirac measure

$$
\delta_{x}(A)= \begin{cases}1 & , \text { if } x \in A \\ 0 & \text { otherwise }\end{cases}
$$

The number game: Posterior

- Note that the MAP estimate can be written as

$$
\hat{h}^{\mathrm{MAP}}=\arg \max _{h} p(h \mid \mathcal{D})=\arg \max _{h}[\log p(\mathcal{D} \mid h)+\log p(h)]
$$

- Likelihood depends exponentially on N, prior stays constant \rightsquigarrow as we get more data, the MAP estimate converges to the maximum likelihood estimate (MLE):

$$
\hat{h}^{\mathrm{MLE}}=\arg \max _{h} p(\mathcal{D} \mid h)=\arg \max _{h} \log p(\mathcal{D} \mid h)
$$

\rightsquigarrow Enough data overwhelms the prior.

- If the true hypothesis is in the hypothesis space, then the MAP/ML estimate will converge upon this hypothesis. Thus Bayesian inference (and ML estimation) are consistent estimators.
- We also say that the hypothesis space is identifiable in the limit, meaning we can recover the truth in the limit of infinite data.

Figure 3.2 in K. Murphy: "Machine Learning", MIT Press, 2012. $\mathcal{D}=\{16\}$ (left) and $\mathcal{D}=\{16,8,2,64\}$ (right)

Generating new numbers

"arithmetic concept" dice

depends on observations \{16\}
"next number" dice

The number game: Posterior predictive distribution

- Posterior $=$ internal belief state about the world.

Test these beliefs by making predictions.

- The posterior predictive distribution is given by

$$
p(\tilde{x} \in C \mid \mathcal{D})=\sum_{h} p(\tilde{x} \mid h) p(h \mid \mathcal{D})
$$

\rightsquigarrow weighted average of the predictions of each hypothesis
\rightsquigarrow Bayes model averaging.

- Small dataset \rightsquigarrow vague posterior $p(h \mid \mathcal{D}) \rightsquigarrow$ broad predictive distribution.
- Once we have "figured things out", posterior becomes a delta function centered at the MAP estimate:

$$
p(\tilde{x} \in C \mid \mathcal{D})=\sum_{h} p(\tilde{x} \mid h) \delta_{\hat{h} \mathrm{MAP}}(h)=p(\tilde{x} \mid \hat{h})
$$

\rightsquigarrow Plug-in approximation. In general, under-represents uncertainty!

- Typically, predictions by plug-in and Bayesian approach quite different for small N although they converge to same answer as $N \rightarrow \infty$.

Figure 3.4 in K. Murphy: "Machine Learning", MIT Press, 2012. Posterior over hypotheses and predictive distribution after seeing $\mathcal{D}=\{16\}$. A dot means this number is consistent with h.
Right: $p(h \mid \mathcal{D})$. Weighed sum of dots $\rightsquigarrow p(\tilde{x} \in C \mid \mathcal{D})$ (top).

Machine predictions

Examples

Figure 3.5 in K. Murphy: "Machine Learning", MIT Press, 2012. Predictive distributions for the model using the full hypothesis space.

Human predictions

Examples

Figure 3.1 in K. Murphy: "Machine Learning", MIT Press, 2012.

The beta-binomial model

- Number game: inferring a distribution of a discrete variable drawn from a finite hypothesis space, $h \in \mathcal{H}$, given a series of discrete observations.
- This made the computations simple: just needed to sum, multiply and divide.
- Often, the K unknown parameters are continuous, so the hypothesis space is (some subset) of \mathbb{R}^{K}.
- This complicates mathematics (replace sums with integrals), but the basic ideas are the same.
- Example: inferring the probability that a coin shows up heads, given a series of observed coin tosses.

Common discrete distributions: Binomial and Bernoulli

- Toss a coin n times. Let $X \in\{0,1, \ldots, n\}$ be the number of heads.
- If the probability of heads is θ, then we say the RV X has a binomial distribution, $X \sim \operatorname{Bin}(n, \theta)$:

$$
\operatorname{Bin}(X=k \mid n, \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
$$

- Special case for $n=1$: Bernoulli distribution. Let $X \in\{0,1\} \rightsquigarrow$ binary random variable. Let θ be the probability of success. We write $X \sim \operatorname{Ber}(\theta)$.

$$
\operatorname{Ber}(x \mid \theta)=\theta^{\mathbb{I}(X=1)}(1-\theta)^{\mathbb{I}(X=0)}
$$

where $\mathbb{I}(x)$ is the indicator function of a binary x :

$$
\operatorname{Ber}(x \mid \theta)= \begin{cases}\theta, & \text { if } x=1 \\ 1-\theta, & \text { if } x=0\end{cases}
$$

The beta-binomial model: Likelihood

- Suppose $X_{i} \sim \operatorname{Ber}(\theta)$, where $X_{i}=1$ represents "heads", and $\theta \in[0,1]$ is the probability of heads.
- Assuming i.i.d. data, i.e. we observe a sequence of trials, $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}, x_{i} \in\{$ heads, tails $\}$, the Bernoulli likelihood is

$$
\begin{aligned}
p(\mathcal{D} \mid \theta) & =\prod_{i=1}^{N} \operatorname{Ber}\left(x_{i} \mid \theta\right)=\theta^{N_{1}}(1-\theta)^{N_{0}} \\
N_{1} & =\sum_{i=1}^{N} \mathbb{I}\left(x_{i}=1\right) \text { heads, } N_{0}=\sum_{i=1}^{N} \mathbb{I}\left(x_{i}=0\right) \text { tails. }
\end{aligned}
$$

- $\left\{N_{1}, N_{0}\right\}$ are a sufficient statistics of the data: all we need to know to infer θ.
- Formally: $s(\mathcal{D})$ is a sufficient statistic for \mathcal{D} if $p(\theta \mid \mathcal{D})=p(\theta \mid s(\mathcal{D}))$.
- Two datasets with the same sufficient statistics
\rightsquigarrow same estimated value for θ.

The beta-binomial model: Likelihood

- Binomial sampling model: Suppose we observe the count of the number of heads N_{1} in a fixed number $N=N_{1}+N_{0}$ of trials, i.e. $\mathcal{D}=\left(N_{1}, N\right)$. Then, $N_{1} \sim \operatorname{Bin}\left(N_{1} \mid N, \theta\right)$, where

$$
\operatorname{Bin}\left(N_{1} \mid N, \theta\right)=\binom{N}{N_{1}} \theta^{N_{1}}(1-\theta)^{N-N_{1}}
$$

- The factor $\binom{N}{N_{1}}$ is independent of θ \rightsquigarrow likelihood for binomial sampling $=$ Bernoulli likelihood.
- Any inferences we make about θ will be the same whether we observe the counts, $\mathcal{D}=\left(N_{1}, N\right)$, or a sequence of trials, $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.

The beta-binomial model: Prior

- Need a prior over the interval $[0,1]$. Would be convenient if the prior had the same form as the likelihood: $p(\theta) \propto \theta^{\gamma_{1}}(1-\theta)^{\gamma_{2}}$.
- Then, the posterior would be

$$
p(\theta \mid \mathcal{D}) \propto \theta^{N_{1}+\gamma_{1}}(1-\theta)^{N_{0}+\gamma_{2}}
$$

Prior and posterior have the same form \rightsquigarrow conjugate prior.

- In the case of the Bernoulli likelihood, the conjugate prior is the beta distribution:

$$
\operatorname{Beta}(\theta \mid a, b) \propto \theta^{a-1}(1-\theta)^{b-1}
$$

- The parameters of the prior are called hyper-parameters. We can set them to encode our prior beliefs.
- If we know "nothing" about θ, we can use a uniform prior.

Can be represented by a beta distribution with $a=b=1$.

Common continuous distributions: Beta

- The beta distribution is supported on the unit interval $[0,1]$
- For $0 \leq x \leq 1$, and shape parameters $\alpha, \beta>0$, the pdf is

$$
p(x \mid \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

The beta function, B , is a normalization constant to ensure that the total probability is 1. Note: $\mu[\operatorname{Beta}(\alpha, \beta)]=\frac{\alpha}{\alpha+\beta}$

The beta-binomial model: Posterior

- Multiplying with the beta prior we get the following posterior:

$$
p(\theta \mid \mathcal{D}) \propto \operatorname{Bin}\left(N_{1} \mid N, \theta\right) \operatorname{Beta}(\theta \mid a, b) \propto \operatorname{Beta}\left(\theta \mid N_{1}+a, N_{0}+b\right)
$$

- Posterior is obtained by adding the prior hyper-parameters to the empirical counts \rightsquigarrow hyper-parameters are known as pseudo counts.
- The strength of the prior, also known as the equivalent sample size, is the sum of the pseudo counts, $\alpha_{0}=a+b$.
- Plays a role analogous to the data set size, $N_{1}+N_{0}=N$.

The beta-binomial model: Posterior predictive distribution

- So far: focus on inference of unknown parameter(s).
- Let us now turn our attention to prediction of future observable data.
- Consider predicting the probability of heads in a single future trial under a $\operatorname{Beta}\left(N_{1}+a, N_{0}+b\right)$ posterior
\rightsquigarrow posterior predictive distribution:

$$
\begin{aligned}
p(\tilde{x}=1 \mid \mathcal{D}) & =\int_{0}^{1} p(\tilde{x}=1 \mid \theta) p(\theta \mid \mathcal{D}) d \theta \\
& =\int_{0}^{1} \theta \underbrace{\operatorname{Beta}\left(\theta \mid N_{1}+a, N_{0}+b\right)}_{p(\theta \mid \mathcal{D})} d \theta \\
& =E[\theta \mid \mathcal{D}]=\frac{N_{1}+a}{N_{1}+N_{0}+a+b} \\
& \left\{\text { Note }: \mu[\operatorname{Beta}(\alpha, \beta)]=\frac{\alpha}{\alpha+\beta}\right\}
\end{aligned}
$$

Overfitting and the black swan paradox

- Suppose that we plug-in the MLE, i.e., we use $p(\tilde{x} \mid \mathcal{D}) \approx \operatorname{Ber}\left(\tilde{x} \mid \hat{\theta}_{\mathrm{MLE}}\right)$.
- Can perform quite poorly when the sample size is small: suppose we have seen $N=3$ tails $\rightsquigarrow \hat{\theta}_{\text {MLE }}=0 / 3=0$
\rightsquigarrow heads seem to be impossible.
- This is called the zero count problem or sparse data problem.
- Even highly relevant in the era of "big data": think about partitioning (patient) data based on (personalized) criteria.
- Analogous to a problem in philosophy called black swan paradox: A black swan was a metaphor for something that could not exist.
- Bayesian solution: use a uniform prior: $a=b=1$.
- Plugging in the posterior gives Laplace's rule of succession

$$
p(\tilde{x}=1 \mid \mathcal{D})=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

Justifies common practice of adding 1 to empirical counts.

Common discrete distributions: Multinomial

- Tossing a K-sided die \rightsquigarrow can use the multinomial distribution.
- Let $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots X_{K}\right)$ be a random vector. Let x_{j} be the number of times side j of the die occurs in n trials.

$$
\operatorname{Mu}(\boldsymbol{X}=\boldsymbol{x} \mid n, \boldsymbol{\theta})=\binom{n}{x_{1} \cdots x_{K}} \prod_{j=1}^{K} \theta_{j}^{x_{j}}
$$

where θ_{j} is the probability that side j shows up, and

$$
\binom{n}{x_{1} \cdots x_{K}}=\frac{n!}{x_{1}!x_{2}!\cdots x_{K}!}
$$

is the multinomial coefficient (the number of ways to divide a set of size $n=\sum_{k=1}^{K} x_{k}$ into subsets with sizes x_{1} up to x_{K}).

- Special case for $n=1$: Mutinoulli distribution.

The Dirichlet-multinomial model

- So far: inferring the probability that a coin comes up heads.
- Generalization: probability that a die with K sides comes up as face k.
- Multinomial sampling model: We observe counts, $\mathcal{D}=\left(N_{1}, \ldots, N_{K}\right)$, where N_{k} is the number of times event k occurred and $\sum_{k} N_{k}=N$:

$$
p(\mathcal{D} \mid N, \boldsymbol{\theta}) \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}}
$$

The counts are again the sufficient statistics. The normalization constant (multinomial coefficient) ist irrelevant for estimating $\boldsymbol{\theta}$.

- Prior: $\boldsymbol{\theta}$ lives in the probability simplex, i.e. $\sum_{k=1}^{K} \theta_{k}=1$ and $\theta_{k} \geq 0$. Conjugate prior with this property: Dirichlet distribution

$$
p(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\operatorname{Dir}(\boldsymbol{\theta} \mid \boldsymbol{\alpha})=\frac{1}{\mathrm{~B}(\boldsymbol{\alpha})} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1}
$$

Common continuous distributions: Dirichlet

- The Dirichlet distribution of order $K \geq 2$ with parameters $\alpha_{1}, \ldots, \alpha_{K}>0$ is a multivariate generalization of the beta distribution.
- For the K-dimensional random vector \boldsymbol{X}, the distribution is supported on \mathbb{R}^{K-1} and is defined as

$$
\operatorname{Dir}\left(\boldsymbol{X}=\left(x_{1}, \ldots, x_{K}\right) \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{1}{\mathrm{~B}(\boldsymbol{\alpha})} \prod_{i=1}^{K} x_{i}^{\alpha_{i}-1}
$$

where the $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ belong to the standard $K-1$ simplex (a.k.a. the probability simplex), i.e.

$$
\sum_{i=1}^{K} x_{i}=1 \text { and } x_{i} \geq 0
$$

The vertices of this simplex are the K standard unit vectors in \mathbb{R}^{K}.

- The normalizing constant is the multivariate beta function.
- The mean is $E\left[X_{i}\right]=\frac{\alpha_{i}}{\sum_{k}\left(\alpha_{k}\right)}$.

Dirichlet distribution

wikimedia.org/w/index.php?curid=49908662

The Dirichlet-multinomial model

- Posterior:

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \mathcal{D}) & \propto p(D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \\
& \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \\
& \propto \prod_{k=1}^{K} \theta_{k}^{N_{k}+\alpha_{k}-1} \\
& =\operatorname{Dir}\left(\boldsymbol{\theta} \mid \alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)
\end{aligned}
$$

- Note that we (again) add pseudo-counts α_{k} to empirical counts N_{k}.

The Dirichlet-multinomial model

- Posterior predictive:

$$
\begin{aligned}
p(\tilde{X}=j \mid \mathcal{D}) & =\int p(\tilde{X}=j \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta}, \quad\left\{\text { write } \boldsymbol{\theta}=\left(\boldsymbol{\theta}_{-j}, \theta_{j}\right)^{t}\right\} \\
& =\int \underbrace{p\left(\tilde{X}=j \mid \theta_{j}\right)}_{\theta_{j}} \underbrace{\left[\int p\left(\boldsymbol{\theta}_{-j}, \theta_{j} \mid \mathcal{D}\right) d \boldsymbol{\theta}_{-j}\right]}_{p\left(\theta_{j} \mid \mathcal{D}\right)} d \theta_{j}\} \\
& =E\left[\theta_{j} \mid \mathcal{D}\right]=\mu\left[\operatorname{Dir}\left(\boldsymbol{\theta} \mid \alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)\right] \\
& =\frac{N_{j}+\alpha_{j}}{\sum_{k}\left(N_{k}+\alpha_{k}\right)}
\end{aligned}
$$

- Note: This Bayesian smoothing avoids the zero-count problem. Even more important in the multinomial case, since we partition the data into many categories.
- Example: Simple language models that predict the probability of the next word.

Language Models

Language Models

Language Models

Language Models

Language Modeling is the task of predicting what word comes next
the students opened their

More formally: given a sequence of words $x^{(1)}, \ldots, x^{(t)}$, and a vocabulary V, compute the probability distribution of the next word $x^{(t+1)} \in V$:

$$
P\left(x^{(t+1)} \mid x^{(t)}, \ldots, x^{(1)}\right) .
$$

How to implement a simple Language Model? ...with a n-gram model! n-gram: sequence of n consecutive words.

Mono-grams: "the", "students", "opened", "their" Bi-grams: "the students", "students opened", "opened their" Tri-grams: "the students opened", "students opened their" 4-grams: "the students opened their"

n-gram Language Models

Idea: observe the frequency of ($n-1$)-grams and estimate the probability of the next word. Simplifying Markov assumption:
Next word depends only on the preceding $n-1$ words.
Mono-gram model: Choose words indpendently.
Example: books occurs 150 times (in a collection of 1000 words)
$\rightsquigarrow \hat{P}($ books $)=0.15$
laptops occurs 100 times $\rightsquigarrow \hat{P}$ (laptops) $=0.1$
If needed: add pseudocounts to overcome sparsity problem.
\rightsquigarrow Bayesian inference for a Multinomial-Dirichlet model!

Mono-gram Model

the students opened their

Analogous to Number-Game: Discrete observations:
$\mathcal{D}=$ collection of n words \rightsquigarrow Likelihood $P(\mathcal{D} \mid$ hypothesis $)$
New: continous hypotheses $\boldsymbol{h}=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$.
Conceptually the same model, but more complicated mathematical formalism (Multinomial-Dirichlet).
Bayesian updating: A-priori \rightsquigarrow A-posteriori word probabilities, given \mathcal{D}
Generating new text: draw from posterior predictive distribution

n-gram Language Models

Simplifying assumption: next word depends only on the preceding $n-1$ words.
3-gram students opened their occurs 1000 times
4-gram extension students opened their books 400 times
$\rightsquigarrow \hat{P}$ (books | students opened their) $=0.4$
Extension students opened their laptops 300 times
$\rightsquigarrow \hat{P}$ (laptops | students opened their) $=0.3$

3-gram Model

the students opened their

"next word" dice

Essentially, this is still a variant of the number game! But there are two problems: Sparsity (What if "students opened their books" never occurred?) Storage (Need to store counts for all n-grams).

n-gram Models: Bayesian interpretation

the students opened their

Bayesian interpretation:

Compute posterior predictive, assuming pseudo-counts $\alpha_{i}=\alpha$:

$$
\begin{aligned}
& P(X^{(t+1)}=j \mid \overbrace{x^{(t)}, \ldots, x^{(t-n+2)}}^{(n-1) \text { words }}, \mathcal{D})=\frac{N_{j}+\alpha}{\sum_{k}\left(N_{k}+\alpha\right)} \\
& =\frac{\operatorname{count}\left\{X^{(t+1)}=j, x^{(t)}, \ldots, x^{(t-n+2)}\right\}+\alpha}{\operatorname{count}\left\{x^{(t)}, \ldots, x^{(t-n+2)}\right\}(1+\alpha)} .
\end{aligned}
$$

Note: only well-defined if count $\left\{x^{(t)}, \ldots, x^{(t-n+2)}\right\}>0$!
Example: "opened their" never occured. Possible work-around: just condition on "their" instead \rightsquigarrow "backoff".

Building a 3-gram model

You can build a simple tri-gram Language Model over a 1.7 million word corpus (Reuters) in a few seconds on your laptop. https://alvinntnu.github.io/python-notes/nlp/language-model.html
\# Count frequency of co-occurance for sentence in reuters.sents ():
for w1, w2, w3 in trigrams(sentence, pad_right=Tru model[(w1, w2)][w3] $+=1$
\# Transform the counts to probabilities
for w1_w2 in model:
total_count $=$ float (sum(model[w1_w2].values ()))
for w3 in model[w1_w2]:
model[w1_w2][w3] /= total_count

Generative 3-gram Model

- Idea: Given 2 start words, choose the next word randomly from all words with 3-gram probabilty $>\epsilon$
- Start word: the news

'conference'	0.25	
'of'.	'of '.'	0.125
'with'	0.125	
'agency'	0.084	
'that'	0.083	
'brought'	0.083	
'about'	0.042	
'broke'	0.041	
0.041		

Note: Severe sparsity problem: not much granularity!

- 3rd word (random choice): the news brought

Generative 3-gram Model

- New probability table: news brought

'by'	0.99

- brought by

'the'	0.27
'several'	0.09
'British'	0.09
'Pepsi'	0.09
'tax'	0.09
'groups'	0.09

- The news brought by Pepsi, which produced the reported negative inflation rates last year's Bureau of Statistics said.
- Surprisingly grammatical ...but incoherent.

More context information is necessary, but increasing n worsens sparsity problem, and increases model size.

- We will discuss better models in the Neural Networks chapter!

