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Chapter 2: Generative models for discrete data

Foundations of Bayesian inference
Bayesian concept learning: the number game
The beta-binomial model: tossing coins
The Dirichlet-multinomial model: rolling dice
Example: Simple language models
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Bayesian concept learning
Consider how a child learns the meaning of the word dog.
Presumably from positive examples, like “look at the cute dog!”
Negative examples much less likely, “look at that non-dog” (?)

Image by rawpixel.com on Freepik Image by jcomp on Freepik Image by wirestock on Freepik

Psychological research has shown that people can learn concepts
from positive examples alone.
Learning meaning of a word = concept learning = binary
classification: f (x) = 1 if x is example of concept C , and 0 otherwise.
Standard classification requires positive and negative examples...
Bayesian concept learning uses positive examples alone.
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The number game (Tenenbaum 1999)
I choose some arithmetical concept C , such as “prime number” or
“powers of two”. I give you a (random) series of positive examples
D = {x1, . . . , xN} drawn from C .
Question: does new x̃ belong to C?
Variation of a common typ of questions in elementary school:

http://aufgaben.schulkreis.de
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The number game
Consider integers in [1, 100]. I tell you 16 is a positive example.
What are other positive examples?
Difficult with only one example, predictions will be quite vague.
Intuition: numbers similar to 16 are more likely.
But what means similar? 17 (close by), 6 (one digit in common),
32 (also even and a power of 2), etc.
Represent this as a probability distribution:
p(x̃ |D): probability that x̃ ∈ C given D.
⇝ posterior predictive distribution.
After seeing D = {16, 8, 2, 64}, you may guess that the concept is
“powers of two”.
...if instead I tell you D = {16, 23, 19, 20}...
How can we explain this behavior and emulate it in a machine?
Suppose we have a hypothesis space of concepts, H.
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Figure 3.1 in K. Murphy, 2012. Empirical predictive distribution averaged over 8 humans in the number game. First two rows:

after seeing D = {16} and D = {60}. This illustrates diffuse similarity. Third row: after seeing D = {16, 8, 2, 64}. This

illustrates rule-like behavior (powers of 2). Bottom row: after seeing D = {16, 23, 19, 20} ⇝ focused similarity (numbers near

20)
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The number game
Version space: subset of H that is consistent with D.
As we see more examples, the version space shrinks and we become
increasingly certain about the concept.
Example: H = {“even”, “odd”, “multiples of 4”,
“powers of two”, “prime”, “powers of 2 except for 32”}
D = {16}: {“even” , “odd”, “multiples of 4” , “powers of 2” ,
“prime”, “powers of 2 except 32”}
D = {16, 8, 2}: {“even” , “odd”, “multiples of 4”, “powers of 2” ,
“prime”, “powers of 2 except 32”}
But: version space is not the whole story:
▶ After seeing D = {16}, there are many consistent rules; how do you

combine them to predict if x̃ ∈ C?
▶ Also, after seeing D = {16, 8, 2, 64}, why did you choose the rule

“powers of two” and not “all even numbers”, or “powers of two except
for 32”, which are equally consistent with the evidence?

Bayesian explanation.
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The number game: Likelihood
Having seen D = {16, 8, 2, 64}, we must explain why we chose
htwo = “powers of two”, and not heven = “even numbers”.
Key intuition: want to avoid suspicious coincidences. If the true
concept was heven, how come we only saw powers of two?
Formalization: assume that examples are
sampled uniformly at random from the extension of a concept
(= set of numbers that belong to it), e.g. heven = {2, 4, 6, . . . , 100}.

Probability of sampling x randomly from h:

P(x |h) = 1
|h| = 1

50 for h = heven

Probability of independently sampling N
items (with replacement): p(D|h) =

[
1

|h|

]N
.

"next number" dice

concept specific faces
uniform probabilities 

"even" = {2,4,6,8,...98,100}
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The number game: Likelihood

Let D = {16} ⇝ p(D|htwo) = 1/6, since there are 6 powers of two
less than 100, but p(D|heven) = 1/50, since there are 50 even
numbers.
So the likelihood that h = htwo is higher than if h = heven.
After 4 examples, p(D|htwo) = (1/6)4, p(D|heven) = (1/50)4.
This is a likelihood ratio of almost 5000:1 in favor of htwo.
This quantifies our earlier intuition that D = {16, 8, 2, 64} would be a
very suspicious coincidence if generated by heven.
Size principle: the model favors the “simplest” hypothesis consistent
with the data. Known as Occam’s razor.
William of Ockham (1287-1347):
When presented with competing hypotheses that make the same
predictions, select the simplest one.
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The number game: Prior
Given D = {16, 8, 2, 64}, the concept

h′ = “powers of two except 32”
is even more likely than

h = “powers of two”,

since h′ does not need to explain the coincidence that 32 is missing.
However, h′ seems “conceptually unnatural”.
Capture such intuition by assigning low prior probability to
“unnatural” concepts.
Your prior might be different than mine, and this subjective aspect
of Bayesian reasoning is a source of much controversy.
But priors are actually quite useful:
▶ If you are told the numbers are from some arithmetic rule, then given

1200, 1500, and 900, you may think 400 is likely but 1183 is unlikely.
▶ But if you are told that the numbers are examples of healthy cholesterol

levels, you would probably think 400 is unlikely and 1183 is likely.
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The number game: Prior
The prior is the mechanism to formalize background knowledge.
Without this, rapid learning is impossible.
Example: use a simple prior which puts uniform probability on 30
simple arithmetical concepts.
To make things more interesting, we make the concepts “even” and
“odd” more likely a priori.
We also include two “unnatural” concepts, namely “powers of 2, plus
37” and “powers of 2, except 32”, but give them low prior weight.

From Figure 3.2 in K. Murphy: “Machine Learning”, MIT Press, 2012. Prior.
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Bayes Formula
a-posteriori P(h|D)︸ ︷︷ ︸

after observing data

← Likelihood P(D|h)︸ ︷︷ ︸
How well does h explain the data?

· a-priori P(h)︸ ︷︷ ︸
prior to observing anything

Thomas Bayes (1701-61): English statistician, philosopher and
Presbyterian minister.
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The number game: Posterior
The posterior is simply the likelihood times the prior, normalized:

p(h|D) = 1
p(D)p(D|h)p(h) = p(h)I(D ∈ h)/|h|N∑

h′∈H p(h′)I(D ∈ h′)/|h′|N
,

where I(D ∈ h) = 1 iff the data are in extension of hypothesis h.
After seeing D = {16, 8, 2, 64}, the likelihood is much more peaked
on the powers of two concept, so this dominates the posterior.
In general, when we have enough data, the posterior p(h|D) becomes
peaked on a single concept, namely the MAP estimate

p(h|D)→ δĥMAP(h),
where

ĥMAP = arg max
h

p(h|D)
is the posterior mode, and δ is the Dirac measure

δx (A) =
{

1 , if x ∈ A,

0 otherwise
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The number game: Posterior

Note that the MAP estimate can be written as
ĥMAP = arg max

h
p(h|D) = arg max

h
[log p(D|h) + log p(h)]

Likelihood depends exponentially on N, prior stays constant
⇝ as we get more data, the MAP estimate converges to the
maximum likelihood estimate (MLE):

ĥMLE = arg max
h

p(D|h) = arg max
h

log p(D|h).

⇝ Enough data overwhelms the prior.
If the true hypothesis is in the hypothesis space, then the MAP/ ML
estimate will converge upon this hypothesis. Thus Bayesian inference
(and ML estimation) are consistent estimators.
We also say that the hypothesis space is identifiable in the limit,
meaning we can recover the truth in the limit of infinite data.
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a-posteriori P(h|D)︸ ︷︷ ︸
after observing data

← Likelihood P(D|h)︸ ︷︷ ︸
How well does h explain the data?

· a-priori P(h)︸ ︷︷ ︸
prior to observing anything
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Figure 3.2 in K. Murphy: “Machine Learning”, MIT Press, 2012. D = {16} (left) and D = {16, 8, 2, 64} (right)
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The number game: Posterior predictive distribution
Posterior = internal belief state about the world.
Test these beliefs by making predictions.
The posterior predictive distribution is given by

p(x̃ ∈ C |D) =
∑

h
p(x̃ |h)p(h|D)

⇝ weighted average of the predictions of each hypothesis
⇝ Bayes model averaging.
Small dataset ⇝ vague posterior p(h|D) ⇝ broad predictive
distribution.
Once we have “figured things out”, posterior becomes a delta
function centered at the MAP estimate:

p(x̃ ∈ C |D) =
∑

h
p(x̃ |h)δĥMAP(h) = p(x̃ |ĥ)

⇝ Plug-in approximation. In general, under-represents uncertainty!
Typically, predictions by plug-in and Bayesian approach quite different
for small N although they converge to same answer as N →∞.
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Figure 3.4 in K. Murphy: “Machine Learning”, MIT Press, 2012. Posterior over
hypotheses and predictive distribution after seeing D = {16}. A dot means this
number is consistent with h.
Right: p(h|D). Weighed sum of dots ⇝ p(x̃ ∈ C |D) (top).
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Machine predictions
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Figure 3.5 in K. Murphy: “Machine Learning”, MIT Press, 2012. Predictive
distributions for the model using the full hypothesis space.
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Human predictions
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Figure 3.1 in K. Murphy: “Machine Learning”, MIT Press, 2012.
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The beta-binomial model

Number game: inferring a distribution of a discrete variable drawn
from a finite hypothesis space , h ∈ H, given a
series of discrete observations.
This made the computations simple: just needed to sum, multiply
and divide.
Often, the K unknown parameters are continuous ,
so the hypothesis space is (some subset) of RK .
This complicates mathematics (replace sums with integrals), but the
basic ideas are the same.
Example: inferring the probability that a coin shows up heads, given a
series of observed coin tosses.
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Common discrete distributions: Binomial and Bernoulli

Toss a coin n times. Let X ∈ {0, 1, . . . , n} be the number of heads.
If the probability of heads is θ, then we say the RV X has a
binomial distribution, X ∼ Bin(n, θ):

Bin(X = k |n, θ) =
(

n
k

)
θk (1− θ)n−k .

Special case for n = 1: Bernoulli distribution.
Let X ∈ {0, 1} ⇝ binary random variable.
Let θ be the probability of success. We write X ∼ Ber(θ).

Ber(x |θ) = θI(x =1)(1− θ)I(x =0);
where I(x) is the indicator function of a binary x :

Ber(x |θ) =
{

θ, if x = 1
1− θ, if x = 0.
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The beta-binomial model: Likelihood

Suppose Xi ∼ Ber(θ), where Xi = 1 represents “heads”,
and θ ∈ [0, 1] is the probability of heads.
Assuming i.i.d. data , i.e. we observe a sequence of trials,
D = {x1, . . . , xN}, xi ∈ {heads, tails} , the Bernoulli likelihood is

p(D|θ) =
N∏

i=1
Ber(xi |θ) = θN1(1− θ)N0

N1 =
N∑

i=1
I(xi = 1) heads, N0 =

N∑
i=1

I(xi = 0) tails.

{N1, N0} are a sufficient statistics of the data:
all we need to know to infer θ.
Formally: s(D) is a sufficient statistic for D if p(θ|D) = p(θ|s(D)).
Two datasets with the same sufficient statistics
⇝ same estimated value for θ.
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The beta-binomial model: Likelihood

Binomial sampling model: Suppose we observe the count of the
number of heads N1 in a fixed number N = N1 + N0 of trials,
i.e. D = (N1, N). Then, N1 ∼ Bin(N1|N, θ), where

Bin(N1|N, θ) =
(

N
N1

)
θN1(1− θ)N−N1 .

The factor
(N

N1

)
is independent of θ

⇝ likelihood for binomial sampling = Bernoulli likelihood.
Any inferences we make about θ will be the same whether we observe
the counts, D = (N1, N), or a sequence of trials, D = {x1, . . . , xN} .
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The beta-binomial model: Prior

Need a prior over the interval [0, 1]. Would be convenient if the prior
had the same form as the likelihood: p(θ) ∝ θγ1(1− θ)γ2 .

Then, the posterior would be
p(θ|D) ∝ θN1+γ1(1− θ)N0+γ2 .

Prior and posterior have the same form ⇝ conjugate prior.
In the case of the Bernoulli likelihood, the conjugate prior is the
beta distribution:

Beta(θ|a, b) ∝ θa−1(1− θ)b−1

The parameters of the prior are called hyper-parameters.
We can set them to encode our prior beliefs.
If we know “nothing” about θ, we can use a uniform prior.
Can be represented by a beta distribution with a = b = 1.
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Common continuous distributions: Beta
The beta distribution is supported on the unit interval [0, 1]
For 0 ≤ x ≤ 1, and shape parameters α, β > 0, the pdf is

p(x |α, β) = 1
B(α, β) x α−1(1− x )β−1.

The beta function, B, is a normalization constant to ensure that the
total probability is 1. Note: µ[Beta(α, β)] = α

α+β

wikimedia.org/w/index.php?curid=15404515
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The beta-binomial model: Posterior

Multiplying with the beta prior we get the following posterior:
p(θ|D) ∝ Bin(N1|N, θ)Beta(θ|a, b) ∝ Beta(θ|N1 + a, N0 + b)

Posterior is obtained by adding the prior hyper-parameters to the
empirical counts
⇝ hyper-parameters are known as pseudo counts.
The strength of the prior, also known as the equivalent sample size ,
is the sum of the pseudo counts, α0 = a + b.
Plays a role analogous to the data set size, N1 + N0 = N.
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The beta-binomial model: Posterior predictive distribution
So far: focus on inference of unknown parameter(s).
Let us now turn our attention to
prediction of future observable data.
Consider predicting the probability of heads in a single future trial
under a Beta(N1 + a, N0 + b) posterior
⇝ posterior predictive distribution:

p(x̃ = 1|D) =
∫ 1

0
p(x̃ = 1|θ)p(θ|D) dθ

=
∫ 1

0
θ Beta(θ|N1 + a, N0 + b)︸ ︷︷ ︸

p(θ|D)

dθ

= E [θ|D] = N1 + a
N1 + N0 + a + b

{Note : µ[Beta(α, β)] = α

α + β
}
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Overfitting and the black swan paradox
Suppose that we plug-in the MLE, i.e., we use p(x̃ |D) ≈ Ber(x̃ |θ̂MLE).
Can perform quite poorly when the sample size is small: suppose we
have seen N = 3 tails ⇝ θ̂MLE = 0/3 = 0
⇝ heads seem to be impossible.
This is called the zero count problem or sparse data problem.
Even highly relevant in the era of “big data”: think about partitioning
(patient) data based on (personalized) criteria.
Analogous to a problem in philosophy called black swan paradox:
A black swan was a metaphor for something that could not exist.
Bayesian solution: use a uniform prior: a = b = 1.
Plugging in the posterior gives Laplace’s rule of succession

p(x̃ = 1|D) = N1 + 1
N1 + N0 + 2

Justifies common practice of adding 1 to empirical counts.
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Common discrete distributions: Multinomial

Tossing a K -sided die ⇝ can use the multinomial distribution.
Let X = (X1, X2, . . . XK ) be a random vector.
Let xj be the number of times side j of the die occurs in n trials.

Mu(X = x |n, θ) =
(

n
x1 · · · xK

) K∏
j=1

θ
xj
j ,

where θj is the probability that side j shows up, and(
n

x1 · · · xK

)
= n!

x1!x2! · · · xK !
is the multinomial coefficient (the number of ways to divide a set of
size n = ∑K

k=1 xk into subsets with sizes x1 up to xK ).
Special case for n = 1: Mutinoulli distribution.
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The Dirichlet-multinomial model

So far: inferring the probability that a coin comes up heads.
Generalization: probability that a die with K sides comes up as face k.
Multinomial sampling model: We observe counts, D = (N1, . . . , NK ),
where Nk is the number of times event k occurred and ∑k Nk = N:

p(D|N, θ) ∝
K∏

k=1
θNk

k ,

The counts are again the sufficient statistics. The normalization
constant (multinomial coefficient) ist irrelevant for estimating θ.
Prior: θ lives in the probability simplex, i.e. ∑K

k=1 θk = 1 and θk ≥ 0.
Conjugate prior with this property: Dirichlet distribution

p(θ|α) = Dir(θ|α) = 1
B(α)

K∏
k=1

θαk−1
k .
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Common continuous distributions: Dirichlet
The Dirichlet distribution of order K ≥ 2 with parameters
α1, . . . , αK > 0 is a multivariate generalization of the beta
distribution.
For the K -dimensional random vector X , the distribution is supported
on RK−1 and is defined as

Dir
(
X = (x1, . . . , xK )|α1, . . . , αK

)
= 1

B(α)

K∏
i=1

xi
αi −1,

where the {x1, x2, . . . , xk} belong to the standard K − 1 simplex
(a.k.a. the probability simplex), i.e.

K∑
i=1

xi = 1 and xi ≥ 0.

The vertices of this simplex are the K standard unit vectors in RK .
The normalizing constant is the multivariate beta function.
The mean is E [Xi ] = αi∑

k(αk) .
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Dirichlet distribution

wikimedia.org/w/index.php?curid=49908662
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The Dirichlet-multinomial model

Posterior:
p(θ|D) ∝ p(D|θ)p(θ|α)

∝
K∏

k=1
θNk

k

K∏
k=1

θαk−1
k

∝
K∏

k=1
θNk+αk−1

k

= Dir(θ|α1 + N1, . . . , αK + NK )
Note that we (again) add pseudo-counts αk to empirical counts Nk .

Volker Roth (University of Basel) Machine Learning 34 / 47



The Dirichlet-multinomial model

Posterior predictive:

p(X̃ = j |D) =
∫

p(X̃ = j |θ)p(θ|D) dθ, {write θ = (θ−j , θj)t}

=
∫

p(X̃ = j |θj)︸ ︷︷ ︸
θj

[∫
p(θ−j , θj |D) dθ−j

]
︸ ︷︷ ︸

p(θj |D)

dθj} =
∫

θjp(θj |D) dθj

= E [θj |D] = µ [Dir(θ|α1 + N1, . . . , αK + NK )]

= Nj + αj∑
k(Nk + αk)

Note: This Bayesian smoothing avoids the zero-count problem.
Even more important in the multinomial case, since we partition the
data into many categories.
Example: Simple language models that predict the probability of
the next word.

Volker Roth (University of Basel) Machine Learning 35 / 47



Language Models
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Language Models

Volker Roth (University of Basel) Machine Learning 37 / 47



Language Models
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Language Models

Language Modeling is the task of predicting what word comes next

the students opened their ......

More formally: given a sequence of words x (1), . . . , x (t), and a vocabulary
V , compute the probability distribution of the next word x (t+1) ∈ V :

P(x (t+1)|x (t), . . . , x (1)).

How to implement a simple Language Model? ...with a n-gram model!
n-gram: sequence of n consecutive words.

Mono-grams: “the” , “students” , “opened” , “their”
Bi-grams: “the students” , “students opened” , “opened their”
Tri-grams: “the students opened” , “students opened their”
4-grams: “the students opened their”
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n-gram Language Models
Idea: observe the frequency of (n − 1)-grams and estimate the probability
of the next word. Simplifying Markov assumption:
Next word depends only on the preceding n − 1 words.
Mono-gram model: Choose words indpendently.
Example: books occurs 150 times (in a collection of 1000 words)
⇝ P̂(books) = 0.15
laptops occurs 100 times ⇝ P̂( laptops) = 0.1
If needed: add pseudocounts to overcome sparsity problem.
⇝ Bayesian inference for a Multinomial-Dirichlet model!
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Mono-gram Model

the students opened their ......

"next word" dice

p  = 0.1l

booksp  = 0.15
b

laptops

e
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 0
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5

e

Analogous to Number-Game: Discrete observations:
D = collection of n words ⇝ Likelihood P(D|hypothesis)
New: continous hypotheses h = {P1, P2, . . . , Pn}.
Conceptually the same model, but more complicated mathematical
formalism (Multinomial-Dirichlet).
Bayesian updating: A-priori ⇝ A-posteriori word probabilities, given D
Generating new text: draw from posterior predictive distribution
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n-gram Language Models
Simplifying assumption: next word depends only on the preceding n − 1
words.
3-gram students opened their occurs 1000 times
4-gram extension students opened their books 400 times
⇝ P̂( books | students opened their) = 0.4
Extension students opened their laptops 300 times
⇝ P̂( laptops | students opened their) = 0.3
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3-gram Model
the students opened their ......

"next word" dice"context" dice

context specific

their
opened

..
..

..
.

..
..

....................

laptops
0.4

0
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books
0.4 e
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Essentially, this is still a variant of the number game!
But there are two problems:
Sparsity (What if “students opened their books” never occurred?)
Storage (Need to store counts for all n-grams).
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n-gram Models: Bayesian interpretation

the students opened their ......

Bayesian interpretation:
Compute posterior predictive, assuming pseudo-counts αi = α:

P(X (t+1) = j |

(n−1)words︷ ︸︸ ︷
x (t), . . . , x (t−n+2),D) =

Nj + α∑
k(Nk + α)

=
count{X (t+1) = j , x (t), . . . , x (t−n+2)} + α

count{x (t), . . . , x (t−n+2)}(1 + α)
.

Note: only well-defined if count{x (t), . . . , x (t−n+2)} > 0 !
Example: “opened their” never occured. Possible work-around: just
condition on “their” instead ⇝ “backoff”.

Volker Roth (University of Basel) Machine Learning 44 / 47



Building a 3-gram model

You can build a simple tri-gram Language Model over a 1.7 million word
corpus (Reuters) in a few seconds on your laptop.
https://alvinntnu.github.io/python-notes/nlp/language-model.html

# Count f r e q u e nc y o f co−occu rance
f o r s en t en c e i n r e u t e r s . s e n t s ( ) :
f o r w1 , w2 , w3 i n t r i g r a m s ( sentence , p a d r i g h t=True , p a d l e f t=True ) :
model [ ( w1 , w2 ) ] [ w3 ] += 1
# Transform the count s to p r o b a b i l i t i e s
f o r w1 w2 i n model :
t o t a l c o u n t = f l o a t ( sum( model [ w1 w2 ] . v a l u e s ( ) ) )
f o r w3 i n model [ w1 w2 ] :
model [ w1 w2 ] [ w3 ] /= t o t a l c o u n t
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Generative 3-gram Model

Idea: Given 2 start words, choose the next word randomly from all
words with 3-gram probabilty > ϵ

Start word: the news .....

’conference’ 0.25
’of’ 0.125
’. ’ 0.125
’with’ 0.084
’agency’ 0.083
’that’ 0.083
’brought’ 0.042
’about’ 0.041
’broke’ 0.041

Note: Severe sparsity problem: not much granularity!
3rd word (random choice): the news brought
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Generative 3-gram Model

New probability table:
news brought ..... ’by’ 0.99

brought by .....

’the’ 0.27
’several’ 0.09
’British’ 0.09
’Pepsi’ 0.09
’tax’ 0.09
’groups’ 0.09

The news brought by Pepsi, which produced the reported
negative inflation rates last year’s Bureau of Statistics said.
Surprisingly grammatical ...but incoherent.
More context information is necessary, but increasing n worsens
sparsity problem, and increases model size.
We will discuss better models in the Neural Networks chapter!
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