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Chapter 3: Classification
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Bayesian Decision Theory

Assign observed x ∈ Rd into one of k classes. A classifier is a
mapping that assigns labels to observations

fα : x → {1, . . . , k}.

For any observation x there exists a set of k possible actions αi ,
i.e. k different assignments of labels.
The loss L incurred for taking action αi when the true label is j is
denoted by a loss matrix Lij = L(αi |c = j).
“Natural” 0− 1 loss function ⇝ counting misclassifications:

Lij = 1− δij , where δij =
{

1 if i = j ,
0 otherwise.
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Bayesian Decision Theory (cont’d)
A classifier is trained on a set of observed pairs
{(x1, c1), . . . , (xn, cn)} i.i.d.∼ p(x, c) = p(c|x)p(x)
The probability that a given x is member of class cj , i.e. the posterior
probability of membership in class j , is obtained via the Bayes rule:

P(cj |x) =
Given the label, observation is generated

p(x|c = j)
p(x)

Nature picks a label first
P(c = j) ,

where
p(x) =

∑k
j=1

p(x|c = j)P(c = j).

Given an observation x, the expected loss associated with choosing
action αi (the conditional risk or posterior expected loss) is

R(fαi |x) =
k∑

j=1
LijP(cj |x)

(if Lij =1−δij )=
∑
j ̸=i

P(cj |x) = 1− P(ci |x).
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Bayesian Decision Theory (cont’d)
Goal: minimize the overall risk of the classifier fα:

R(fα) =
∫

Rd
R

(
fα(x)|x

)
p(x) dx.

If fα(x) minimizes the conditional risk R(fα(x)|x) for every x, the
overall risk will be minimized as well.
This is achieved by the Bayes optimal classifier which chooses the
mapping

f (x) = argmin
i

k∑
j=1

Lij P(c = j |x).

For 0− 1 loss, this reduces to classifying x to the class with highest
posterior probability:

f (x) = argmax
i

P(c = i |x).
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Bayesian Decision Theory (cont’d)
Simplification: only 2 classes: c is Bernoulli RV.
Bayes optimal classifier is defined by the zero crossings of the
Bayes optimal discriminant function

G(x) = P(c1|x)− P(c2|x), or g(x) = log P(c1|x)
P(c2|x) .

Problem: direct approximation of G would require the knowledge of
the Bayes optimal discriminant.
Define a parametrized family of classifiers Fw from which we can
choose one (or more) function(s) by some inference mechanism.
One such family: linear discriminant functions g(x; w) = w0 + w tx.
Two-category case: Decide c1 if g(x; w) > 0 and c2 if g(x; w) < 0.
Eq. g(x; w) = 0 defines the decision surface .
The hyperplane divides the feature space into half-spaces
R1 (“positive side”) and R2 (“negative side”).
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Decision Hyperplanes
g(x; w) defines distance r from x to the hyperplane: x = xp + r w

∥w∥ .
g(xp) = 0 ⇒ g(x) = r∥w∥ ⇔ r = g(x)/∥w∥.
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FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

Fig 5.2 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.
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Generalized Linear Discriminant Functions
Use basis functions {b1(x), . . . , bm(x)}, where each bi(x) : Rd 7→ R, and
g(x; w) = w0 + w1b1(x) + · · ·+ wmbm(x) =: w ty (note that we have
redefined y here in order to be consistent with the following figure)
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FIGURE 5.5. The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y-space into regions corresponding to
two categories, and this in turn gives a nonsimply connected decision region in the
one-dimensional x-space. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 5.5 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.
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Generalized Linear Discriminant Functions
Use basis functions {b1(x), . . . , bm(x)}, where each bi(x) : Rd 7→ R, and

g(x; w) = w0 + w1b1(x) + · · ·+ wmbm(x) =: w ty .
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FIGURE 5.6. The two-dimensional input space x is mapped through a polynomial func-
tion f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear discriminant
in this transformed space is a hyperplane, which cuts the surface. Points to the positive

side of the hyperplane Ĥ correspond to category ω1, and those beneath it correspond to
category ω2. Here, in terms of the x space, R1 is a not simply connected. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

Fig 5.6 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.
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Separable Case
Consider sample {y i , ci}ni=1. If there exists f (y ; w) = y tw which is
positive for all examples in class 1 and negative for all examples in
class 2, we say that the sample is linearly separable.
Normalization: replace all samples labeled c2 by their negatives
⇝ simply write y tw > 0 for all samples.
Each sample places a constraint on the possible location of w
⇝ solution region.
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FIGURE 5.8. Four training samples (black for ω1, red for ω2) and the solution region in
feature space. The figure on the left shows the raw data; the solution vectors leads to a
plane that separates the patterns from the two categories. In the figure on the right, the
red points have been “normalized”—that is, changed in sign. Now the solution vector
leads to a plane that places all “normalized” points on the same side. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

Fig 5.8 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Volker Roth (University of Basel) Machine Learning 10 / 32



Separable Case: Margin
Different solution vectors may have different
classification margins b: y tw ≥ b > 0.
Intuitively, large margins are good. We will formalize this in the
chapter on Statistical Learning Theory.
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FIGURE 5.9. The effect of the margin on the solution region. At the left is the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the right
is the case b > 0, shrinking the solution region by margins b/‖yi‖. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

Fig 5.9 in in Duda, Hart & Stork: Pattern Classification. Wiley 2001.
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Gradient Descent

Solve y tw > 0 by defining J(w) such that a minimizer of J is a
solution.
Most obvious choice for J : #(misclassifications), not differentiable.
Alternative choice: Jp(w) =

∑
y∈M−y tw , where M(w) is the set of

samples misclassified by w . Jp(w) is differentiable.
Note that y tw < 0 ∀y ∈M
⇝ Jp is non-negative, and zero only if w is a solution.

Gradient descent: Start with initial w (1), choose next move in the
direction of the negative gradient: w (k+1) = w (k) − η(k)∇J(w (k)).
Gradient: ∇J(w) = −

∑
y∈M y . Gradient descent:

w (k+1) = w (k) + η(k) ∑
y∈M

y .

This defines the Batch Perceptron algorithm.
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Fixed-Increment Single Sample Perceptron
Fix learning rate η = 1.
Gradient step is sum of individual steps in the direction of single
misclassified samples.
Sequential single-sample updates: use superscripts y1, y2, . . . for
misclassified samples y ∈M. Ordering is irrelevant.
Simple algorithm:

w (1) arbitrary
w (k+1) = w (k) + yk , k ≥ 1

Perceptron Convergence Theorem
If the samples are linearly separable, the sequence of weight vectors given
by the Fixed-Increment Single Sample Perceptron algorithm will terminate
at a solution vector.

Proof: exercises.
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Minimizing the Perceptron Criterion (2)
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FIGURE 5.12. The Perceptron criterion, Jp(a), is plotted as a function of the weights a1

and a2 for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2, y3, y1, y3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by y3)
takes the candidate vector farther from the solution region than after the first update
(cf. Theorem 5.1). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Fig 5.12 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.
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Issues

A number of problems with the perceptron algorithm:
When the data are separable, there are many solutions,
and which one is found depends on the starting values.
In particular, no separation margin can be guaranteed
(however, there exist modified versions...)
The number of steps can be very large.
When the data are not separable, the algorithm will not necessarily
converge, and cycles may occur.
The cycles can be long and therefore hard to detect.
Method “technical” in nature, no (obvious) probabilistic
interpretation (but we will see that there is one).

But the perceptron algorithm is historically important (1957, one of the
first ML algorithms!), was even implemented in analog hardware(!)
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Generative (or Informative) vs Discriminative

Notation: For the following discussion it is more convenient to go
back to the original x-vectors (potentially after some basis expansion)
instead of using the “normalized” representation y .
Two main strategies:

▶ Generative: Generative classifiers specify how to generate data using
the class densities.
Likelihood/posterior of each class is examined and classification is
usually done by assigning to the most likely class.

▶ Discriminative: These classifiers focus on modeling the
class boundaries or the class membership probabilities directly.
No attempt is made to model the underlying class conditional densities.
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Generative Classifiers
Central idea: model the conditional class densities p(x|c).
Assuming a parametrized family pw j (x|c = j) and collecting all model
parameters in a vector w , a typical Frequentist approach now
proceeds by maximizing the log likelihood:

ŵMLE = argmax
w

n∑
i=1

log pw(x i |ci)

(Approximate) Bayesian interpretation: ŵMLE might then be plugged
into Bayes rule to compute the class assignment probabilities

P(cj |x) = pŵMLE (x|c = j)
p(x) P(c = j).

In Linear Discriminant Analysis (LDA), a Gaussian model is used
where all classes share a common covariance matrix Σ:

pw(x|c = j) = N (x; µj , Σ).
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Common continuous distributions: Multivariate Normal

The multivariate normal distribution of a k-dimensional random
vector X = (X1, . . . , Xk)t can be written as: X ∼ N (µ, Σ),
with k-dimensional mean vector

µ = E[X] = [E[X1], E[X2], . . . , E[Xk ]]t

and k × k covariance matrix
Σ =: E[(X− µ)(X− µ)t] = [Cov[Xi , Xj ]; 1 ≤ i , j ≤ k],

where
Cov[Xi , Xj ] = E[(Xi − µi)(Xj − µj)].

The inverse of the covariance matrix is called precision matrix
The pdf of the multivariate normal distribution is

p(x1, . . . , xk |µ, Σ) = 1√
(2π)k |Σ|

exp
(
−1

2(x− µ)tΣ−1(x− µ)
)
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The multivariate Normal distribution
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Affine transformations:
If Y = c + BX is an affine transformation of X ∼ N (µ, Σ), then
Y ∼ N

(
c + Bµ, BΣBt). Why?

µY = E[c + BX] = c + B E[X] = c + Bµ

ΣY = E[(c + BX− c + Bµ)(c + BX− c + Bµ)t ]
= E[B(X− µ)(X− µ)tBt ] = BΣBt
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The multivariate normal distribution

2D Gaussian: p(x|µ = 0, Σ) = 1√
2π|Σ|

exp(−1
2xtΣ−1x)

Covariance
(also written “co-variance”)
is a measure of how much two
random variables vary to-
gether:

positive: positive linear
coherence,
negative: negative
linear coherence,
0: no linear coherence.
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Generative Classifiers: LDA

In Linear Discriminant Analysis , a Gaussian model is used where
all classes share a common covariance matrix Σ:

pw(x|c = j) = N (x; µj , Σ).

The resulting discriminant functions are linear:

g(x) = log P(c1|x)
P(c2|x) = log P(c1)N (x; µ1, Σ)

P(c2)N (x; µ2, Σ)

= log P(c1)
P(c2) −

1
2 (µ1 + µ2)t Σ−1 (µ1 − µ2)︸ ︷︷ ︸

w0

+(µ1 − µ2)t Σ−1x︸ ︷︷ ︸
w tx

= w0 + w tx, with w = Σ−1(µ1 − µ2).
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LDA algorithm

Let Σ̂ be an estimate of the shared covariance matrix Σ:
Σc = 1

nc

∑
x∈Xc

(x −mc)(x −mc)t , c ∈ {c1, c2}

Σ̂ = 1
2(Σ1 + Σ2).

Let mj an estimate of µj :

mc = 1
nc

∑
x∈Xc

x, nc = |Xc |.

LDA finds the weight vector

wLDA = Σ̂−1(m1 −m2).

Law of large numbers: as n→∞, Σ̂→ Σ and mj → µj
⇝ This classifier is asymptotically Bayes-optimal,
if the Gaussian model with shared covariances is correct.
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LDA
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Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012
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Discriminative classifiers

Discriminative classifiers focus directly on the discriminant function.
In general, they are more flexible with regard to the class conditional
densities they are capable of modeling.
Notation: Can use any class encoding scheme. Here: c ∈ {0, 1}.
Bayes formula:

g(x) = log P(c = 1|x)
P(c = 0|x)

= log p(x|c = 1)P(c = 1)
p(x|c = 0)P(c = 0) ,

Can model any conditional probabilities that are exponential “tilts” of
each other:

p(x|c = 1) = eg(x) p(x|c = 0)P(c = 0)
P(c = 1)
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Logistic Regression (LOGREG)
Logistic regression uses a linear discriminant function,
i.e. g(x) = w tx + w0.
For the special case p(x|c) = N (x; µ0,1, Σ), same as LDA:

p(x|c = 1) = N (x, µ1, Σ) = eg(x)N (x; µ0, Σ) P(c = 0)
P(c = 1)

⇒ g(x) = w0 + w tx = log P(c = 1)N (x; µ1, Σ)
P(c = 0)N (x; µ0, Σ)
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Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012
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Logistic Regression (LOGREG)
Two-class problem with Bernoulli RV c taking values in {0, 1}
⇝ sufficient to represent P(1|x), since P(0|x) = 1− P(1|x).
“Success probability” of the Bernoulli RV: π(x) := P(1|x).
Probability of miss (c = 0) or hit (c = 1) as a function of x:

p(c|x) = π(x)c(1− π(x))1−c , π(x) = P(c = 1|x).
Basketball example:
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Adapted from Fig. 7.5.1 in B. Flury: A first course in multivariate statistics. Springer 1997.
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Logistic Regression (LOGREG)
LOGREG: g(x) = w tx + w0 = log P(c=1|x)

P(c=0|x) = log π(x)
1−π(x)

This implies π(x)
1−π(x) = exp{g(x)}

⇒ π(x) = P(c = 1|x) = exp{g(x)}
1+exp{g(x)} =: σ(g(x)).

Sigmoid or logistic “squashing function” σ(z) = ez

1+ez = 1
1+e−z

turns linear predictions into probabilities
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Simple extension for K classes: the softmax function:
P(c = k|x) = exp{gk(x)}∑K

m=1 exp{gm(x)}
.
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Logistic Regression (LOGREG)
Assume that w0 is “absorbed” in w using x ← (1, x). Estimate w by
maximizing the conditional likelihood

ŵDISCR = argmax
w

n∏
i=1

(π(x i ; w))ci (1− π(x i ; w))1−ci ,

or by minimizing the negative log likelihood:

−l(w) = −
n∑

i=1
[ci log π(x i ; w) + (1− ci) log(1− π(x i ; w))] .

The the gradient of l is:

∇w l = ∂

∂w l(w) =
n∑

i=1
x i(ci − πi).

The πi depend non-linearly on w
⇝ equation system ∇w l = 0 cannot be solved analytically
⇝ iterative techniques needed (e.g. gradient descent).
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Logistic Regression (LOGREG)
Simple binary classification problem in R2. Solved with LOGREG using
polynomial basis functions.
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LOGREG and Perceptron
Gradient of log-likelihood (at step k):

∇w (k) l = ∂

∂w l(w)
∣∣
w=w (k) =

n∑
i=1

x i(ci − π
(k)
i ).

Gradient descent (for negative log.l.): w (k+1) = w (k) + η∇w (k) .
Assume stream of data ⇝ online update for new observation x i :

w (k+1) = w (k) + η(ci − π
(k)
i )x i , with π

(k)
i = P(c = 1|x i , w (k)).

Now consider approximation: define most probable label
ĉi = arg maxc∈{0,1} P(c|x i , w (k)) and replace πi with ĉi .
If we predicted correctly, then ĉi = ci ⇝ approximate gradient is zero
⇝ update has no effect.
If ĉi = 0 but ci = 1: w (k+1) = w (k) + η(ci − ĉi)x i = w (k) + ηx i .
Note that this is again the perceptron algorithm.
Solution to most problems of the classical perceptron: use exact
gradient instead of approximation based on most probable labels.
We do this in modern Multi Layer Perceptrons (MLP).
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Loss function

LOGREG minimizes the negative log likelihood

−l(w) = −
n∑

i=1
[ci log π(x i ; w) + (1− ci) log(1− π(x i ; w))] ,

where z = w tx, π = 1
1+e−z , 1− π = e−z

1+e−z .
Introducing a loss function , we can write this as minimizing the
average loss

1
n

n∑
i=1

Loss(ci , zi).

Volker Roth (University of Basel) Machine Learning 31 / 32



The perceptron / LOGREG

Can be viewed as an output layer in a neural network:

1

L(c, z)

wdxd

w0

c

z = w tx

x1 x2 xd

w1x1

Adding additional layers ⇝ Multi-Layer Perceptrons (MLP).
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