Machine Learning

Volker Roth

Department of Mathematics & Computer Science University of Basel

Э

Chapter 3: Classification

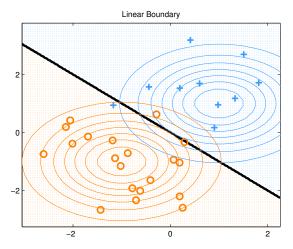


Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012

Э

<ロト <回ト < 回ト < 回ト

Bayesian Decision Theory

• Assign observed $x \in \mathbb{R}^d$ into one of k classes. A **classifier** is a mapping that assigns labels to observations

$$f_{\alpha}: \mathbf{x} \to \{1, \ldots, k\}.$$

- For any observation *x* there exists a set of *k* possible actions α_i,
 i.e. *k* different assignments of labels.
- The **loss** *L* incurred for taking action α_i when the true label is *j* is denoted by a loss matrix $L_{ij} = L(\alpha_i | c = j)$.
- "Natural" 0 1 loss function \rightsquigarrow counting misclassifications:

$$L_{ij} = 1 - \delta_{ij}$$
, where $\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$

Bayesian Decision Theory (cont'd)

- A classifier is trained on a set of **observed pairs** $\{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x}, c) = p(c|\mathbf{x})p(\mathbf{x})$
- The probability that a given *x* is member of class *c_j*, i.e. the posterior probability of membership in class *j*, is obtained via the **Bayes rule**:

$$P(c_j | m{x}) = rac{p(m{x} | c = j)}{p(m{x})}$$
 Nature picks a label first $P(c_j | m{x}) = rac{p(m{x} | c = j)}{p(m{x})}$

where

$$p(\mathbf{x}) = \sum_{j=1}^{k} p(\mathbf{x}|c=j) P(c=j).$$

Given an observation *x*, the expected loss associated with choosing action α_i (the conditional risk or posterior expected loss) is

$$R(f_{\alpha_i}|\boldsymbol{x}) = \sum_{j=1}^k L_{ij} P(c_j|\boldsymbol{x}) \stackrel{\text{(if } L_{ij}=1-\delta_{ij})}{=} \sum_{j\neq i} P(c_j|\boldsymbol{x}) = 1 - P(c_i|\boldsymbol{x}).$$

Bayesian Decision Theory (cont'd)

• **Goal:** minimize the **overall risk** of the classifier f_{α} :

$$R(f_{\alpha}) = \int_{\boldsymbol{R}^d} R(f_{\alpha}(\boldsymbol{x})|\boldsymbol{x}) p(\boldsymbol{x}) \, d\boldsymbol{x}.$$

- If f_α(x) minimizes the conditional risk R(f_α(x)|x) for every x, the overall risk will be minimized as well.
- This is achieved by the Bayes optimal classifier which chooses the mapping

$$f(\mathbf{x}) = \arg\min_{i} \sum_{j=1}^{k} L_{ij} P(c = j | \mathbf{x}).$$

• For 0 – 1 loss, this reduces to classifying *x* to the class with highest posterior probability:

$$f(\boldsymbol{x}) = \operatorname*{argmax}_{i} P(c = i | \boldsymbol{x}).$$

Bayesian Decision Theory (cont'd)

- Simplification: only 2 classes: *c* is Bernoulli RV.
- Bayes optimal classifier is defined by the zero crossings of the Bayes optimal discriminant function

$$G(oldsymbol{x}) = P(c_1|oldsymbol{x}) - P(c_2|oldsymbol{x}), ext{ or } g(oldsymbol{x}) = \log rac{P(c_1|oldsymbol{x})}{P(c_2|oldsymbol{x})}.$$

- Problem: direct approximation of *G* would require the knowledge of the Bayes optimal discriminant.
- Define a **parametrized family of classifiers** \mathcal{F}_w from which we can choose one (or more) function(s) by some **inference mechanism**.
- One such family: linear discriminant functions $g(\mathbf{x}; \mathbf{w}) = w_0 + \mathbf{w}^t \mathbf{x}$.
- Two-category case: Decide c_1 if $g(\mathbf{x}; \mathbf{w}) > 0$ and c_2 if $g(\mathbf{x}; \mathbf{w}) < 0$. Eq. $g(\mathbf{x}; \mathbf{w}) = 0$ defines the **decision surface**.
- The hyperplane divides the feature space into half-spaces \mathcal{R}_1 ("positive side") and \mathcal{R}_2 ("negative side").

Decision Hyperplanes

- $g(\mathbf{x}; \mathbf{w})$ defines distance r from \mathbf{x} to the hyperplane: $\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$.
- $g(\mathbf{x}_p) = 0 \Rightarrow g(\mathbf{x}) = r \|\mathbf{w}\| \quad \Leftrightarrow \quad r = g(\mathbf{x}) / \|\mathbf{w}\|.$

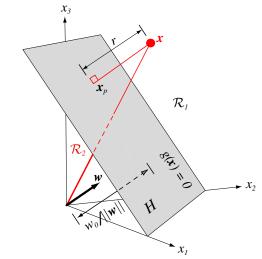


Fig 5.2 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Volker Roth (University of Basel)

Machine Learning

Generalized Linear Discriminant Functions

Use basis functions $\{b_1(\mathbf{x}), \ldots, b_m(\mathbf{x})\}$, where each $b_i(\mathbf{x}) : \mathbb{R}^d \mapsto \mathbb{R}$, and $g(\mathbf{x}; \mathbf{w}) = w_0 + w_1 b_1(\mathbf{x}) + \cdots + w_m b_m(\mathbf{x}) =: \mathbf{w}^t \mathbf{y}$ (note that we have redefined \mathbf{y} here in order to be consistent with the following figure)

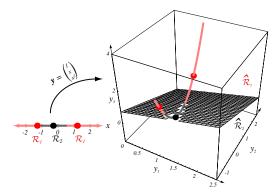


Fig 5.5 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Generalized Linear Discriminant Functions

Use basis functions $\{b_1(\mathbf{x}), \ldots, b_m(\mathbf{x})\}$, where each $b_i(\mathbf{x}) : \mathbb{R}^d \mapsto \mathbb{R}$, and

$$g(\boldsymbol{x};\boldsymbol{w}) = w_0 + w_1 b_1(\boldsymbol{x}) + \cdots + w_m b_m(\boldsymbol{x}) =: \boldsymbol{w}^t \boldsymbol{y}.$$

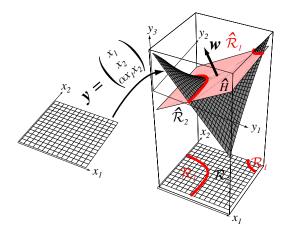


Fig 5.6 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

ヘロマ ヘロマ ヘロマ ・ 日

Separable Case

- Consider sample {y_i, c_i}ⁿ_{i=1}. If there exists f(y; w) = y^t w which is positive for all examples in class 1 and negative for all examples in class 2, we say that the sample is linearly separable.
- Normalization: replace all samples labeled c₂ by their negatives
 → simply write y^t w > 0 for all samples.
- Each sample places a constraint on the possible location of \boldsymbol{w}
 - \rightsquigarrow solution region.

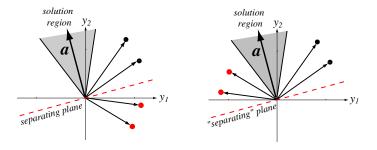


Fig 5.8 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Separable Case: Margin

- Different solution vectors may have different classification margins b: y^tw ≥ b > 0.
- Intuitively, **large margins are good.** We will formalize this in the chapter on **Statistical Learning Theory.**

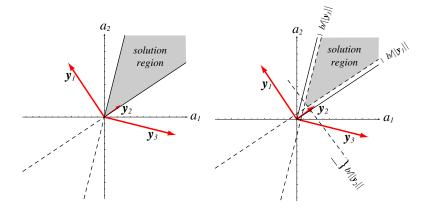


Fig 5.9 in in Duda, Hart & Stork: Pattern Classification. Wiley 2001. 4 🚊 🕨 4 🚊 🔊 🔍

Gradient Descent

- Solve y^t w > 0 by defining J(w) such that a minimizer of J is a solution.
- Most obvious choice for J: #(misclassifications), not differentiable.
- Alternative choice: J_p(w) = ∑_{y∈M} − y^tw, where M(w) is the set of samples misclassified by w. J_p(w) is differentiable.

• Note that
$$y^t w < 0 \ \forall y \in \mathcal{M}$$

 $\rightsquigarrow J_p$ is non-negative, and zero only if w is a solution.

• Gradient descent: Start with initial $w^{(1)}$, choose next move in the direction of the negative gradient: $w^{(k+1)} = w^{(k)} - \eta^{(k)} \nabla J(w^{(k)})$.

• Gradient: $\nabla J(\mathbf{w}) = -\sum_{\mathbf{y} \in \mathcal{M}} \mathbf{y}$. Gradient descent: $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} \sum_{\mathbf{y} \in \mathcal{M}} \mathbf{y}$.

This defines the **Batch Perceptron algorithm**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

Fixed-Increment Single Sample Perceptron

- Fix learning rate $\eta = 1$.
- Gradient step is **sum of individual steps** in the direction of **single misclassified samples.**
- Sequential single-sample updates: use superscripts y¹, y²,... for misclassified samples y ∈ M. Ordering is irrelevant.
- Simple algorithm:

 $oldsymbol{w}^{(1)}$ arbitrary $oldsymbol{w}^{(k+1)} = oldsymbol{w}^{(k)} + oldsymbol{y}^k, \ k \geq 1$

Perceptron Convergence Theorem

If the samples are linearly separable, the sequence of weight vectors given by the Fixed-Increment Single Sample Perceptron algorithm will terminate at a solution vector.

Proof: exercises.

Volker Roth (University of Basel)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Minimizing the Perceptron Criterion (2)

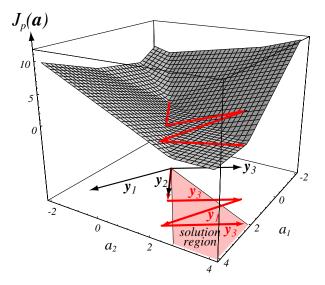


Fig 5.12 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Volker Roth (University of Basel)

Э

Issues

A number of problems with the perceptron algorithm:

- When the data are separable, there are **many solutions**, and which one is found **depends on the starting values**.
- In particular, no **separation margin** can be guaranteed (however, there exist modified versions...)
- The number of steps can be **very** large.
- When the data are not separable, the algorithm will not necessarily converge, and cycles may occur.
 The cycles can be long and therefore hard to detect.
- Method "technical" in nature, no (obvious) probabilistic interpretation (but we will see that there is one).

But the perceptron algorithm is **historically important** (1957, one of the first ML algorithms!), was even implemented in analog hardware(!)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Generative (or Informative) vs Discriminative

- Notation: For the following discussion it is more convenient to go back to the original *x*-vectors (potentially after some basis expansion) instead of using the "normalized" representation *y*.
- Two main strategies:
 - Generative: Generative classifiers specify how to generate data using the class densities.

Likelihood/posterior of each class is examined and classification is usually done by assigning to the most likely class.

 Discriminative: These classifiers focus on modeling the class boundaries or the class membership probabilities directly. No attempt is made to model the underlying class conditional densities.

イロト 人間ト イヨト イヨト

Generative Classifiers

- Central idea: model the **conditional class densities** $p(\mathbf{x}|c)$.
- Assuming a parametrized family $p_{w_j}(x|c=j)$ and collecting all model parameters in a vector w, a typical **Frequentist** approach now proceeds by maximizing the log likelihood:

$$\hat{\boldsymbol{w}}_{MLE} = \operatorname{argmax}_{\boldsymbol{w}} \sum_{i=1}^{n} \log p_{\boldsymbol{w}}(\boldsymbol{x}_i | c_i)$$

• (Approximate) **Bayesian** interpretation: \hat{w}_{MLE} might then be plugged into Bayes rule to compute the class assignment probabilities

$$P(c_j|\boldsymbol{x}) = \frac{p_{\hat{\boldsymbol{w}}_{MLE}}(\boldsymbol{x}|c=j)}{p(\boldsymbol{x})}P(c=j).$$

In **Linear Discriminant Analysis** (LDA), a Gaussian model is used where all classes share a common covariance matrix Σ :

$$p_{\boldsymbol{w}}(\boldsymbol{x}|\boldsymbol{c}=\boldsymbol{j}) = \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_{\boldsymbol{j}},\boldsymbol{\Sigma}).$$

<ロト <部ト <注ト <注ト = 正

Common continuous distributions: Multivariate Normal

The multivariate normal distribution of a k-dimensional random vector X = (X₁,...,X_k)^t can be written as: X ~ N(μ, Σ), with k-dimensional mean vector

$$\boldsymbol{\mu} = \mathsf{E}[\mathbf{X}] = [\mathsf{E}[X_1], \mathsf{E}[X_2], \dots, \mathsf{E}[X_k]]^{\mathrm{t}}$$

and $k \times k$ covariance matrix

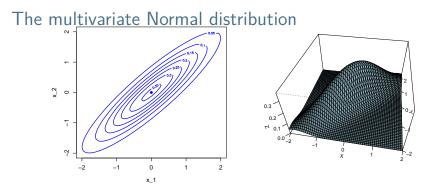
$$\Sigma =: \mathsf{E}[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\mathrm{t}}] = [\mathsf{Cov}[X_i, X_j]; 1 \le i, j \le k],$$

where

$$\mathsf{Cov}[X_i, X_j] = \mathsf{E}[(X_i - \mu_i)(X_j - \mu_j)].$$

- The inverse of the covariance matrix is called precision matrix
- The pdf of the multivariate normal distribution is

$$p(x_1,\ldots,x_k|\boldsymbol{\mu},\boldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^k|\boldsymbol{\Sigma}|}} \exp\left(-rac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{t}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$



Affine transformations:

If $\mathbf{Y} = \mathbf{c} + B\mathbf{X}$ is an affine transformation of $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{Y} \sim \mathcal{N}(\mathbf{c} + B\boldsymbol{\mu}, B\boldsymbol{\Sigma}B^{t})$. Why?

$$\mu_{\mathbf{Y}} = \mathsf{E}[\boldsymbol{c} + B\mathbf{X}] = \boldsymbol{c} + B \,\mathsf{E}[\mathbf{X}] = \boldsymbol{c} + B \boldsymbol{\mu}$$

$$\Sigma_{\mathbf{Y}} = \mathsf{E}[(\boldsymbol{c} + B\mathbf{X} - \boldsymbol{c} + B\boldsymbol{\mu})(\boldsymbol{c} + B\mathbf{X} - \boldsymbol{c} + B\boldsymbol{\mu})^{t}]$$

$$= \mathsf{E}[B(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{t}B^{t}] = B\Sigma B^{t}$$

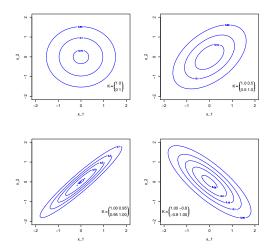
The multivariate normal distribution

2D Gaussian:
$$p(\mathbf{x}|\boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}|}} \exp(-\frac{1}{2}\mathbf{x}^t \boldsymbol{\Sigma}^{-1} \mathbf{x})$$

Covariance

(also written "<u>co-</u>variance") is a measure of how much **two** random variables vary together:

- positive: positive linear coherence,
- **negative**: negative linear coherence,
- 0: no linear coherence.



Generative Classifiers: LDA

• In Linear Discriminant Analysis, a Gaussian model is used where all classes share a common covariance matrix Σ :

$$p_{\boldsymbol{w}}(\boldsymbol{x}|c=j) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}).$$

• The resulting discriminant functions are linear:

$$g(\mathbf{x}) = \log \frac{P(c_1 | \mathbf{x})}{P(c_2 | \mathbf{x})} = \log \frac{P(c_1) \mathcal{N}(\mathbf{x}; \mu_1, \Sigma)}{P(c_2) \mathcal{N}(\mathbf{x}; \mu_2, \Sigma)}$$

=
$$\underbrace{\log \frac{P(c_1)}{P(c_2)} - \frac{1}{2} (\mu_1 + \mu_2)^t \Sigma^{-1} (\mu_1 - \mu_2)}_{w_0}$$

+
$$\underbrace{(\mu_1 - \mu_2)^t \Sigma^{-1} \mathbf{x}}_{\mathbf{w}^t \mathbf{x}}$$

= $w_0 + \mathbf{w}^t \mathbf{x}$, with $\mathbf{w} = \Sigma^{-1} (\mu_1 - \mu_2)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

LDA algorithm

• Let $\hat{\Sigma}$ be an estimate of the shared covariance matrix Σ : $\Sigma_c = \frac{1}{n_c} \sum_{\mathbf{x} \in \mathcal{X}_c} (\mathbf{x} - \mathbf{m}_c) (\mathbf{x} - \mathbf{m}_c)^t, \quad c \in \{c_1, c_2\}$ $\hat{\Sigma} = \frac{1}{2} (\Sigma_1 + \Sigma_2).$

• Let m_j an estimate of μ_j :

$$m_c = \frac{1}{n_c} \sum_{\mathbf{x} \in \mathcal{X}_c} \mathbf{x}, \quad n_c = |\mathcal{X}_c|.$$

LDA finds the weight vector

$$\boldsymbol{w}^{\mathsf{LDA}} = \hat{\Sigma}^{-1} (\boldsymbol{m}_1 - \boldsymbol{m}_2).$$

Law of large numbers: as $n \to \infty$, $\hat{\Sigma} \to \Sigma$ and $m_j \to \mu_j$ \rightsquigarrow This classifier is asymptotically Bayes-optimal, if the Gaussian model with shared covariances is correct.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

LDA

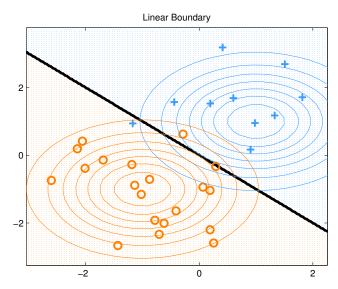


Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012

æ

ヘロト 人間 とくほ とくほ とう

Discriminative classifiers

- Discriminative classifiers focus directly on the **discriminant function**.
- In general, they are more flexible with regard to the class conditional densities they are capable of modeling.
- Notation: Can use any class encoding scheme. Here: $c \in \{0, 1\}$.
- Bayes formula:

$$g(\mathbf{x}) = \log \frac{P(c = 1 | \mathbf{x})}{P(c = 0 | \mathbf{x})}$$

=
$$\log \frac{p(\mathbf{x} | c = 1) P(c = 1)}{p(\mathbf{x} | c = 0) P(c = 0)},$$

 Can model any conditional probabilities that are exponential "tilts" of each other:

$$p(\mathbf{x}|c=1) = e^{g(\mathbf{x})} p(\mathbf{x}|c=0) \frac{P(c=0)}{P(c=1)}$$

- Logistic regression uses a linear discriminant function, i.e. $g(x) = w^t x + w_0$.
- For the special case $p(\mathbf{x}|c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{0,1}, \boldsymbol{\Sigma})$, same as LDA:

$$p(\mathbf{x}|c=1) = \mathcal{N}(\mathbf{x}, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = e^{g(\mathbf{x})} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}) \frac{P(c=0)}{P(c=1)}$$
$$\Rightarrow g(\mathbf{x}) = w_0 + \mathbf{w}^t \mathbf{x} = \log \frac{P(c=1)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma})}{P(c=0)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma})}$$

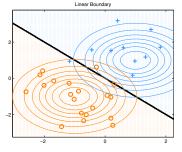
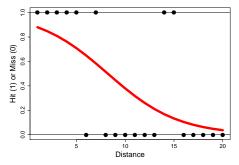


Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012

- Two-class problem with Bernoulli RV *c* taking values in $\{0, 1\}$ \rightsquigarrow sufficient to represent $P(1|\mathbf{x})$, since $P(0|\mathbf{x}) = 1 - P(1|\mathbf{x})$.
- "Success probability" of the Bernoulli RV: $\pi(\mathbf{x}) := P(1|\mathbf{x})$.
- Probability of miss (c = 0) or hit (c = 1) as a function of x:
 - $p(c|\mathbf{x}) = \pi(\mathbf{x})^{c}(1 \pi(\mathbf{x}))^{1-c}, \quad \pi(\mathbf{x}) = P(c = 1|\mathbf{x}).$
- Basketball example:



Adapted from Fig. 7.5.1 in B. Flury: A first course in multivariate statistics. Springer 1997.

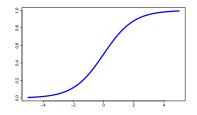
くロト く得ト くほト くほう

• LOGREG: $g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = \log \frac{P(c=1|\mathbf{x})}{P(c=0|\mathbf{x})} = \log \frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}$

• This implies
$$\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})} = \exp\{g(\mathbf{x})\}$$

 $\Rightarrow \pi(\mathbf{x}) = P(c = 1 | \mathbf{x}) = \frac{\exp\{g(\mathbf{x})\}}{1+\exp\{g(\mathbf{x})\}} =: \sigma(g(\mathbf{x})).$

• **Sigmoid** or **logistic** "squashing function" $\sigma(z) = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}}$ turns linear predictions into probabilities



• Simple extension for *K* classes: the **softmax** function: $P(c = k | \mathbf{x}) = \frac{\exp\{g_k(\mathbf{x})\}}{\sum_{m=1}^{K} \exp\{g_m(\mathbf{x})\}}.$

• Assume that w_0 is "absorbed" in \boldsymbol{w} using $\boldsymbol{x} \leftarrow (1, \boldsymbol{x})$. Estimate \boldsymbol{w} by maximizing the conditional likelihood

$$\hat{\boldsymbol{w}}_{DISCR} = \arg \max_{\boldsymbol{w}} \prod_{i=1}^{n} (\pi(\boldsymbol{x}_i; \boldsymbol{w}))^{c_i} (1 - \pi(\boldsymbol{x}_i; \boldsymbol{w}))^{1-c_i},$$

or by minimizing the negative log likelihood:

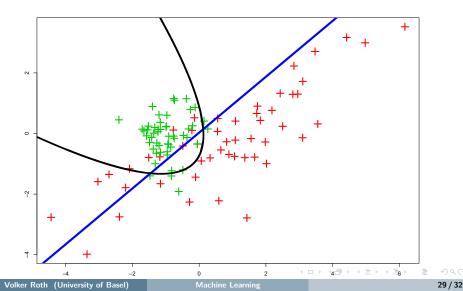
$$-l(\boldsymbol{w}) = -\sum_{i=1}^{n} \left[c_i \log \pi(\boldsymbol{x}_i; \boldsymbol{w}) + (1 - c_i) \log(1 - \pi(\boldsymbol{x}_i; \boldsymbol{w})) \right].$$

• The the gradient of / is:

$$\nabla_{\boldsymbol{w}} l = \frac{\partial}{\partial \boldsymbol{w}} l(\boldsymbol{w}) = \sum_{i=1}^{n} \boldsymbol{x}_i (c_i - \pi_i).$$

- The π_i depend non-linearly on **w**
 - \rightsquigarrow equation system $\boldsymbol{\nabla}_{\boldsymbol{w}}\textit{\textit{I}} = \boldsymbol{0}$ cannot be solved analytically
 - \rightarrow iterative techniques needed (e.g. gradient descent).

Simple binary classification problem in \mathbb{R}^2 . Solved with LOGREG using polynomial basis functions.



LOGREG and Perceptron

• Gradient of log-likelihood (at step k):

$$\nabla_{\mathbf{w}^{(k)}} I = \frac{\partial}{\partial \mathbf{w}} I(\mathbf{w}) \big|_{\mathbf{w} = \mathbf{w}^{(k)}} = \sum_{i=1}^{n} \mathbf{x}_{i} (c_{i} - \pi_{i}^{(k)}).$$

• Gradient descent (for negative log.l.): $\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} + \eta \boldsymbol{\nabla}_{\boldsymbol{w}^{(k)}}$.

- Assume stream of data \rightsquigarrow online update for new observation \mathbf{x}_i : $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta(\mathbf{c}_i - \pi_i^{(k)})\mathbf{x}_i$, with $\pi_i^{(k)} = P(\mathbf{c} = 1 | \mathbf{x}_i, \mathbf{w}^{(k)})$.
- Now consider approximation: define **most probable label** $\hat{c}_i = \arg \max_{c \in \{0,1\}} P(c | \mathbf{x}_i, \mathbf{w}^{(k)})$ and replace π_i with \hat{c}_i .
- If we predicted correctly, then $\hat{c}_i = c_i \rightsquigarrow$ approximate gradient is zero \rightsquigarrow update has no effect.
- If $\hat{c}_i = 0$ but $c_i = 1$: $w^{(k+1)} = w^{(k)} + \eta(c_i \hat{c}_i)x_i = w^{(k)} + \eta x_i$.
- Note that this is again the perceptron algorithm.
- Solution to most problems of the classical perceptron: use exact gradient instead of approximation based on most probable labels.
 We do this in modern Multi Layer Perceptrons (MLP).

Loss function

LOGREG minimizes the negative log likelihood

$$-l(\boldsymbol{w}) = -\sum_{i=1}^{n} \left[c_i \log \pi(\boldsymbol{x}_i; \boldsymbol{w}) + (1 - c_i) \log(1 - \pi(\boldsymbol{x}_i; \boldsymbol{w})) \right],$$

where $z = w^t x$, $\pi = \frac{1}{1 + e^{-z}}$, $1 - \pi = \frac{e^{-z}}{1 + e^{-z}}$.

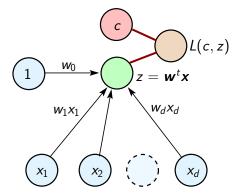
 Introducing a loss function, we can write this as minimizing the average loss

$$\frac{1}{n}\sum_{i=1}^n \operatorname{Loss}(c_i, z_i).$$

イロト イポト イヨト イヨト 三日

The perceptron / LOGREG

Can be viewed as an output layer in a neural network:



Adding additional layers \rightsquigarrow **Multi-Layer Perceptrons (MLP).**

- 4 回 ト - 4 回 ト