## Machine Learning

Volker Roth

Department of Mathematics & Computer Science University of Basel

Э

### Chapter 3: Classification



Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012

Э

<ロト <回ト < 回ト < 回ト

### Bayesian Decision Theory

• Assign observed  $x \in \mathbb{R}^d$  into one of k classes. A **classifier** is a mapping that assigns labels to observations

$$f_{\alpha}: \mathbf{x} \to \{1, \ldots, k\}.$$

- For any observation *x* there exists a set of *k* possible actions α<sub>i</sub>,
   i.e. *k* different assignments of labels.
- The **loss** *L* incurred for taking action  $\alpha_i$  when the true label is *j* is denoted by a loss matrix  $L_{ij} = L(\alpha_i | c = j)$ .
- "Natural" 0 1 loss function  $\rightsquigarrow$  counting misclassifications:

$$L_{ij} = 1 - \delta_{ij}$$
, where  $\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$ 

## Bayesian Decision Theory (cont'd)

- A classifier is trained on a set of **observed pairs**  $\{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \stackrel{\text{i.i.d.}}{\sim} p(\mathbf{x}, c) = p(c|\mathbf{x})p(\mathbf{x})$
- The probability that a given *x* is member of class *c<sub>j</sub>*, i.e. the posterior probability of membership in class *j*, is obtained via the **Bayes rule**:

$$P(c_j | m{x}) = rac{p(m{x} | c = j)}{p(m{x})}$$
 Nature picks a label first  $P(c_j | m{x}) = rac{p(m{x} | c = j)}{p(m{x})}$ 

where

$$p(\mathbf{x}) = \sum_{j=1}^{k} p(\mathbf{x}|c=j) P(c=j).$$

Given an observation *x*, the expected loss associated with choosing action α<sub>i</sub> (the conditional risk or posterior expected loss) is

$$R(f_{\alpha_i}|\boldsymbol{x}) = \sum_{j=1}^k L_{ij} P(c_j|\boldsymbol{x}) \stackrel{\text{(if } L_{ij}=1-\delta_{ij})}{=} \sum_{j\neq i} P(c_j|\boldsymbol{x}) = 1 - P(c_i|\boldsymbol{x}).$$

### Bayesian Decision Theory (cont'd)

• **Goal:** minimize the **overall risk** of the classifier  $f_{\alpha}$ :

$$R(f_{\alpha}) = \int_{\boldsymbol{R}^d} R(f_{\alpha}(\boldsymbol{x})|\boldsymbol{x}) p(\boldsymbol{x}) \, d\boldsymbol{x}.$$

- If f<sub>α</sub>(x) minimizes the conditional risk R(f<sub>α</sub>(x)|x) for every x, the overall risk will be minimized as well.
- This is achieved by the Bayes optimal classifier which chooses the mapping

$$f(\mathbf{x}) = \arg\min_{i} \sum_{j=1}^{k} L_{ij} P(c = j | \mathbf{x}).$$

• For 0 – 1 loss, this reduces to classifying *x* to the class with highest posterior probability:

$$f(\boldsymbol{x}) = \operatorname*{argmax}_{i} P(c = i | \boldsymbol{x}).$$

# Bayesian Decision Theory (cont'd)

- Simplification: only 2 classes: *c* is Bernoulli RV.
- Bayes optimal classifier is defined by the zero crossings of the Bayes optimal discriminant function

$$G(oldsymbol{x}) = P(c_1|oldsymbol{x}) - P(c_2|oldsymbol{x}), ext{ or } g(oldsymbol{x}) = \log rac{P(c_1|oldsymbol{x})}{P(c_2|oldsymbol{x})}.$$

- Problem: direct approximation of *G* would require the knowledge of the Bayes optimal discriminant.
- Define a **parametrized family of classifiers**  $\mathcal{F}_w$  from which we can choose one (or more) function(s) by some **inference mechanism**.
- One such family: linear discriminant functions  $g(\mathbf{x}; \mathbf{w}) = w_0 + \mathbf{w}^t \mathbf{x}$ .
- Two-category case: Decide  $c_1$  if  $g(\mathbf{x}; \mathbf{w}) > 0$  and  $c_2$  if  $g(\mathbf{x}; \mathbf{w}) < 0$ . Eq.  $g(\mathbf{x}; \mathbf{w}) = 0$  defines the **decision surface**.
- The hyperplane divides the feature space into half-spaces  $\mathcal{R}_1$  ("positive side") and  $\mathcal{R}_2$  ("negative side").

### **Decision Hyperplanes**

- $g(\mathbf{x}; \mathbf{w})$  defines distance r from  $\mathbf{x}$  to the hyperplane:  $\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$ .
- $g(\mathbf{x}_p) = 0 \Rightarrow g(\mathbf{x}) = r \|\mathbf{w}\| \quad \Leftrightarrow \quad r = g(\mathbf{x}) / \|\mathbf{w}\|.$



Fig 5.2 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Volker Roth (University of Basel)

Machine Learning

### Generalized Linear Discriminant Functions

Use basis functions  $\{b_1(\mathbf{x}), \ldots, b_m(\mathbf{x})\}$ , where each  $b_i(\mathbf{x}) : \mathbb{R}^d \mapsto \mathbb{R}$ , and  $g(\mathbf{x}; \mathbf{w}) = w_0 + w_1 b_1(\mathbf{x}) + \cdots + w_m b_m(\mathbf{x}) =: \mathbf{w}^t \mathbf{y}$  (note that we have redefined  $\mathbf{y}$  here in order to be consistent with the following figure)



Fig 5.5 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

### Generalized Linear Discriminant Functions

Use basis functions  $\{b_1(\mathbf{x}), \ldots, b_m(\mathbf{x})\}$ , where each  $b_i(\mathbf{x}) : \mathbb{R}^d \mapsto \mathbb{R}$ , and

$$g(\boldsymbol{x};\boldsymbol{w}) = w_0 + w_1 b_1(\boldsymbol{x}) + \cdots + w_m b_m(\boldsymbol{x}) =: \boldsymbol{w}^t \boldsymbol{y}.$$



Fig 5.6 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

ヘロマ ヘロマ ヘロマ ・ 日

## Separable Case

- Consider sample {y<sub>i</sub>, c<sub>i</sub>}<sup>n</sup><sub>i=1</sub>. If there exists f(y; w) = y<sup>t</sup> w which is positive for all examples in class 1 and negative for all examples in class 2, we say that the sample is linearly separable.
- Normalization: replace all samples labeled c<sub>2</sub> by their negatives
   → simply write y<sup>t</sup> w > 0 for all samples.
- Each sample places a constraint on the possible location of  $\boldsymbol{w}$ 
  - $\rightsquigarrow$  solution region.



Fig 5.8 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Separable Case: Margin

- Different solution vectors may have different classification margins b: y<sup>t</sup>w ≥ b > 0.
- Intuitively, **large margins are good.** We will formalize this in the chapter on **Statistical Learning Theory.**



Fig 5.9 in in Duda, Hart & Stork: Pattern Classification. Wiley 2001. 4 🚊 🕨 4 🚊 🔊 🔍

### Gradient Descent

- Solve y<sup>t</sup> w > 0 by defining J(w) such that a minimizer of J is a solution.
- Most obvious choice for J: #(misclassifications), not differentiable.
- Alternative choice: J<sub>p</sub>(w) = ∑<sub>y∈M</sub> − y<sup>t</sup>w, where M(w) is the set of samples misclassified by w. J<sub>p</sub>(w) is differentiable.

• Note that 
$$y^t w < 0 \ \forall y \in \mathcal{M}$$
  
 $\rightsquigarrow J_p$  is non-negative, and zero only if  $w$  is a solution.

• Gradient descent: Start with initial  $w^{(1)}$ , choose next move in the direction of the negative gradient:  $w^{(k+1)} = w^{(k)} - \eta^{(k)} \nabla J(w^{(k)})$ .

• Gradient:  $\nabla J(\mathbf{w}) = -\sum_{\mathbf{y} \in \mathcal{M}} \mathbf{y}$ . Gradient descent:  $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta^{(k)} \sum_{\mathbf{y} \in \mathcal{M}} \mathbf{y}$ .

This defines the **Batch Perceptron algorithm**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○ ○

# Fixed-Increment Single Sample Perceptron

- Fix learning rate  $\eta = 1$ .
- Gradient step is **sum of individual steps** in the direction of **single misclassified samples.**
- Sequential single-sample updates: use superscripts y<sup>1</sup>, y<sup>2</sup>,... for misclassified samples y ∈ M. Ordering is irrelevant.
- Simple algorithm:

 $oldsymbol{w}^{(1)}$  arbitrary  $oldsymbol{w}^{(k+1)} = oldsymbol{w}^{(k)} + oldsymbol{y}^k, \ k \geq 1$ 

#### Perceptron Convergence Theorem

If the samples are linearly separable, the sequence of weight vectors given by the Fixed-Increment Single Sample Perceptron algorithm will terminate at a solution vector.

#### Proof: exercises.

Volker Roth (University of Basel)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

## Minimizing the Perceptron Criterion (2)



Fig 5.12 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.

Volker Roth (University of Basel)

Э

#### Issues

A number of problems with the perceptron algorithm:

- When the data are separable, there are **many solutions**, and which one is found **depends on the starting values**.
- In particular, no **separation margin** can be guaranteed (however, there exist modified versions...)
- The number of steps can be **very** large.
- When the data are not separable, the algorithm will not necessarily converge, and cycles may occur.
   The cycles can be long and therefore hard to detect.
- Method "technical" in nature, no (obvious) probabilistic interpretation (but we will see that there is one).

But the perceptron algorithm is **historically important** (1957, one of the first ML algorithms!), was even implemented in analog hardware(!)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

# Generative (or Informative) vs Discriminative

- Notation: For the following discussion it is more convenient to go back to the original *x*-vectors (potentially after some basis expansion) instead of using the "normalized" representation *y*.
- Two main strategies:
  - Generative: Generative classifiers specify how to generate data using the class densities.

Likelihood/posterior of each class is examined and classification is usually done by assigning to the most likely class.

 Discriminative: These classifiers focus on modeling the class boundaries or the class membership probabilities directly. No attempt is made to model the underlying class conditional densities.

イロト 人間ト イヨト イヨト

### Generative Classifiers

- Central idea: model the **conditional class densities**  $p(\mathbf{x}|c)$ .
- Assuming a parametrized family  $p_{w_j}(x|c=j)$  and collecting all model parameters in a vector w, a typical **Frequentist** approach now proceeds by maximizing the log likelihood:

$$\hat{\boldsymbol{w}}_{MLE} = \operatorname{argmax}_{\boldsymbol{w}} \sum_{i=1}^{n} \log p_{\boldsymbol{w}}(\boldsymbol{x}_i | c_i)$$

• (Approximate) **Bayesian** interpretation:  $\hat{w}_{MLE}$  might then be plugged into Bayes rule to compute the class assignment probabilities

$$P(c_j|\boldsymbol{x}) = \frac{p_{\hat{\boldsymbol{w}}_{MLE}}(\boldsymbol{x}|c=j)}{p(\boldsymbol{x})}P(c=j).$$

In **Linear Discriminant Analysis** (LDA), a Gaussian model is used where all classes share a common covariance matrix  $\Sigma$ :

$$p_{\boldsymbol{w}}(\boldsymbol{x}|\boldsymbol{c}=\boldsymbol{j}) = \mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_{\boldsymbol{j}},\boldsymbol{\Sigma}).$$

<ロト <部ト <注ト <注ト = 正

## Common continuous distributions: Multivariate Normal

The multivariate normal distribution of a k-dimensional random vector X = (X<sub>1</sub>,...,X<sub>k</sub>)<sup>t</sup> can be written as: X ~ N(μ, Σ), with k-dimensional mean vector

$$\boldsymbol{\mu} = \mathsf{E}[\mathbf{X}] = [\mathsf{E}[X_1], \mathsf{E}[X_2], \dots, \mathsf{E}[X_k]]^{\mathrm{t}}$$

and  $k \times k$  covariance matrix

$$\Sigma =: \mathsf{E}[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\mathrm{t}}] = [\mathsf{Cov}[X_i, X_j]; 1 \le i, j \le k],$$

where

$$\mathsf{Cov}[X_i, X_j] = \mathsf{E}[(X_i - \mu_i)(X_j - \mu_j)].$$

- The inverse of the covariance matrix is called precision matrix
- The pdf of the multivariate normal distribution is

$$p(x_1,\ldots,x_k|\boldsymbol{\mu},\boldsymbol{\Sigma}) = rac{1}{\sqrt{(2\pi)^k|\boldsymbol{\Sigma}|}} \exp\left(-rac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{t}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$



Affine transformations:

If  $\mathbf{Y} = \mathbf{c} + B\mathbf{X}$  is an affine transformation of  $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ , then  $\mathbf{Y} \sim \mathcal{N}(\mathbf{c} + B\boldsymbol{\mu}, B\boldsymbol{\Sigma}B^{t})$ . Why?

$$\mu_{\mathbf{Y}} = \mathsf{E}[\boldsymbol{c} + B\mathbf{X}] = \boldsymbol{c} + B \,\mathsf{E}[\mathbf{X}] = \boldsymbol{c} + B \boldsymbol{\mu}$$
  
$$\Sigma_{\mathbf{Y}} = \mathsf{E}[(\boldsymbol{c} + B\mathbf{X} - \boldsymbol{c} + B\boldsymbol{\mu})(\boldsymbol{c} + B\mathbf{X} - \boldsymbol{c} + B\boldsymbol{\mu})^{t}]$$
  
$$= \mathsf{E}[B(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{t}B^{t}] = B\Sigma B^{t}$$

# The multivariate normal distribution

2D Gaussian: 
$$p(\mathbf{x}|\boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{2\pi|\boldsymbol{\Sigma}|}} \exp(-\frac{1}{2}\mathbf{x}^t \boldsymbol{\Sigma}^{-1} \mathbf{x})$$

#### Covariance

(also written "<u>co-</u>variance") is a measure of how much **two** random variables vary together:

- positive: positive linear coherence,
- **negative**: negative linear coherence,
- 0: no linear coherence.



### Generative Classifiers: LDA

• In Linear Discriminant Analysis, a Gaussian model is used where all classes share a common covariance matrix  $\Sigma$ :

$$p_{\boldsymbol{w}}(\boldsymbol{x}|c=j) = \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}).$$

• The resulting discriminant functions are linear:

$$g(\mathbf{x}) = \log \frac{P(c_1 | \mathbf{x})}{P(c_2 | \mathbf{x})} = \log \frac{P(c_1) \mathcal{N}(\mathbf{x}; \mu_1, \Sigma)}{P(c_2) \mathcal{N}(\mathbf{x}; \mu_2, \Sigma)}$$
  
= 
$$\underbrace{\log \frac{P(c_1)}{P(c_2)} - \frac{1}{2} (\mu_1 + \mu_2)^t \Sigma^{-1} (\mu_1 - \mu_2)}_{w_0}$$
  
+ 
$$\underbrace{(\mu_1 - \mu_2)^t \Sigma^{-1} \mathbf{x}}_{\mathbf{w}^t \mathbf{x}}$$
  
=  $w_0 + \mathbf{w}^t \mathbf{x}$ , with  $\mathbf{w} = \Sigma^{-1} (\mu_1 - \mu_2)$ .

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

# LDA algorithm

• Let  $\hat{\Sigma}$  be an estimate of the shared covariance matrix  $\Sigma$ :  $\Sigma_c = \frac{1}{n_c} \sum_{\mathbf{x} \in \mathcal{X}_c} (\mathbf{x} - \mathbf{m}_c) (\mathbf{x} - \mathbf{m}_c)^t, \quad c \in \{c_1, c_2\}$  $\hat{\Sigma} = \frac{1}{2} (\Sigma_1 + \Sigma_2).$ 

• Let  $m_j$  an estimate of  $\mu_j$ :

$$m_c = \frac{1}{n_c} \sum_{\mathbf{x} \in \mathcal{X}_c} \mathbf{x}, \quad n_c = |\mathcal{X}_c|.$$

LDA finds the weight vector

$$\boldsymbol{w}^{\mathsf{LDA}} = \hat{\Sigma}^{-1} (\boldsymbol{m}_1 - \boldsymbol{m}_2).$$

Law of large numbers: as  $n \to \infty$ ,  $\hat{\Sigma} \to \Sigma$  and  $m_j \to \mu_j$  $\rightsquigarrow$  This classifier is asymptotically Bayes-optimal, if the Gaussian model with shared covariances is correct.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

# LDA



Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012

æ

ヘロト 人間 とくほ とくほ とう

### Discriminative classifiers

- Discriminative classifiers focus directly on the **discriminant function**.
- In general, they are more flexible with regard to the class conditional densities they are capable of modeling.
- Notation: Can use any class encoding scheme. Here:  $c \in \{0, 1\}$ .
- Bayes formula:

$$g(\mathbf{x}) = \log \frac{P(c = 1 | \mathbf{x})}{P(c = 0 | \mathbf{x})}$$
  
= 
$$\log \frac{p(\mathbf{x} | c = 1) P(c = 1)}{p(\mathbf{x} | c = 0) P(c = 0)},$$

 Can model any conditional probabilities that are exponential "tilts" of each other:

$$p(\mathbf{x}|c=1) = e^{g(\mathbf{x})} p(\mathbf{x}|c=0) \frac{P(c=0)}{P(c=1)}$$

- Logistic regression uses a linear discriminant function, i.e.  $g(x) = w^t x + w_0$ .
- For the special case  $p(\mathbf{x}|c) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{0,1}, \boldsymbol{\Sigma})$ , same as LDA:

$$p(\mathbf{x}|c=1) = \mathcal{N}(\mathbf{x}, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = e^{g(\mathbf{x})} \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}) \frac{P(c=0)}{P(c=1)}$$
$$\Rightarrow g(\mathbf{x}) = w_0 + \mathbf{w}^t \mathbf{x} = \log \frac{P(c=1)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma})}{P(c=0)\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_0, \boldsymbol{\Sigma})}$$



Fig 4.5 in K. Murphy: Machine Learning. MIT Press 2012

- Two-class problem with Bernoulli RV *c* taking values in  $\{0, 1\}$  $\rightsquigarrow$  sufficient to represent  $P(1|\mathbf{x})$ , since  $P(0|\mathbf{x}) = 1 - P(1|\mathbf{x})$ .
- "Success probability" of the Bernoulli RV:  $\pi(\mathbf{x}) := P(1|\mathbf{x})$ .
- Probability of miss (c = 0) or hit (c = 1) as a function of x:
  - $p(c|\mathbf{x}) = \pi(\mathbf{x})^{c}(1 \pi(\mathbf{x}))^{1-c}, \quad \pi(\mathbf{x}) = P(c = 1|\mathbf{x}).$
- Basketball example:



Adapted from Fig. 7.5.1 in B. Flury: A first course in multivariate statistics. Springer 1997.

くロト く得ト くほト くほう

• LOGREG:  $g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = \log \frac{P(c=1|\mathbf{x})}{P(c=0|\mathbf{x})} = \log \frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}$ 

• This implies 
$$\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})} = \exp\{g(\mathbf{x})\}$$
  
 $\Rightarrow \pi(\mathbf{x}) = P(c = 1 | \mathbf{x}) = \frac{\exp\{g(\mathbf{x})\}}{1+\exp\{g(\mathbf{x})\}} =: \sigma(g(\mathbf{x})).$ 

• **Sigmoid** or **logistic** "squashing function"  $\sigma(z) = \frac{e^z}{1+e^z} = \frac{1}{1+e^{-z}}$  turns linear predictions into probabilities



• Simple extension for *K* classes: the **softmax** function:  $P(c = k | \mathbf{x}) = \frac{\exp\{g_k(\mathbf{x})\}}{\sum_{m=1}^{K} \exp\{g_m(\mathbf{x})\}}.$ 

• Assume that  $w_0$  is "absorbed" in  $\boldsymbol{w}$  using  $\boldsymbol{x} \leftarrow (1, \boldsymbol{x})$ . Estimate  $\boldsymbol{w}$  by maximizing the conditional likelihood

$$\hat{\boldsymbol{w}}_{DISCR} = \arg \max_{\boldsymbol{w}} \prod_{i=1}^{n} (\pi(\boldsymbol{x}_i; \boldsymbol{w}))^{c_i} (1 - \pi(\boldsymbol{x}_i; \boldsymbol{w}))^{1-c_i},$$

or by minimizing the negative log likelihood:

$$-l(\boldsymbol{w}) = -\sum_{i=1}^{n} \left[ c_i \log \pi(\boldsymbol{x}_i; \boldsymbol{w}) + (1 - c_i) \log(1 - \pi(\boldsymbol{x}_i; \boldsymbol{w})) \right].$$

• The the gradient of / is:

$$\nabla_{\boldsymbol{w}} l = \frac{\partial}{\partial \boldsymbol{w}} l(\boldsymbol{w}) = \sum_{i=1}^{n} \boldsymbol{x}_i (c_i - \pi_i).$$

- The  $\pi_i$  depend non-linearly on **w** 
  - $\rightsquigarrow$  equation system  $\boldsymbol{\nabla}_{\boldsymbol{w}}\textit{\textit{I}} = \boldsymbol{0}$  cannot be solved analytically
  - $\rightarrow$  iterative techniques needed (e.g. gradient descent).

Simple binary classification problem in  $\mathbb{R}^2$ . Solved with LOGREG using polynomial basis functions.



# LOGREG and Perceptron

• Gradient of log-likelihood (at step k):

$$\nabla_{\mathbf{w}^{(k)}} I = \frac{\partial}{\partial \mathbf{w}} I(\mathbf{w}) \big|_{\mathbf{w} = \mathbf{w}^{(k)}} = \sum_{i=1}^{n} \mathbf{x}_{i} (c_{i} - \pi_{i}^{(k)}).$$

• Gradient descent (for negative log.l.):  $\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} + \eta \boldsymbol{\nabla}_{\boldsymbol{w}^{(k)}}$ .

- Assume stream of data  $\rightsquigarrow$  online update for new observation  $\mathbf{x}_i$ :  $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta(\mathbf{c}_i - \pi_i^{(k)})\mathbf{x}_i$ , with  $\pi_i^{(k)} = P(\mathbf{c} = 1 | \mathbf{x}_i, \mathbf{w}^{(k)})$ .
- Now consider approximation: define **most probable label**  $\hat{c}_i = \arg \max_{c \in \{0,1\}} P(c | \mathbf{x}_i, \mathbf{w}^{(k)})$  and replace  $\pi_i$  with  $\hat{c}_i$ .
- If we predicted correctly, then  $\hat{c}_i = c_i \rightsquigarrow$  approximate gradient is zero  $\rightsquigarrow$  update has no effect.
- If  $\hat{c}_i = 0$  but  $c_i = 1$ :  $w^{(k+1)} = w^{(k)} + \eta(c_i \hat{c}_i)x_i = w^{(k)} + \eta x_i$ .
- Note that this is again the perceptron algorithm.
- Solution to most problems of the classical perceptron: use exact gradient instead of approximation based on most probable labels.
   We do this in modern Multi Layer Perceptrons (MLP).

#### Loss function

LOGREG minimizes the negative log likelihood

$$-l(\boldsymbol{w}) = -\sum_{i=1}^{n} \left[ c_i \log \pi(\boldsymbol{x}_i; \boldsymbol{w}) + (1 - c_i) \log(1 - \pi(\boldsymbol{x}_i; \boldsymbol{w})) \right],$$

where  $z = w^t x$ ,  $\pi = \frac{1}{1 + e^{-z}}$ ,  $1 - \pi = \frac{e^{-z}}{1 + e^{-z}}$ .

 Introducing a loss function, we can write this as minimizing the average loss

$$\frac{1}{n}\sum_{i=1}^n \operatorname{Loss}(c_i, z_i).$$

イロト イポト イヨト イヨト 三日

# The perceptron / LOGREG

Can be viewed as an output layer in a neural network:



Adding additional layers  $\rightsquigarrow$  **Multi-Layer Perceptrons (MLP).** 

- 4 回 ト - 4 回 ト