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Chapter 4: Regression
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Regression basics

In regression we assume that a response variable y ∈ R is a noisy
function of the input variable x ∈ Rd .

y = f (x) + η.

We often assume that f is linear, f (x) = w tx, and that η has a
zero-mean Gaussian distribution with constant variance, η ∼ N(0, σ2).
This is can equivalently be written as

p(y |x) = N(µ(x), σ2), with µ(x) = w tx.

In one dimension: µ(x) = w0 + w1x and x = (1, x).
w0 is the intercept or bias term and w1 is the slope.
If w1 > 0, we expect the output to increase as the input increases.
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Least Squares and Maximum Likelihood

Fit n data points (x i , yi) to a model that has d + 1 parameters
wj , j = 0, . . . , d .
Notation: x ← (1, x) ⇝ w0 is the intercept.
Frequentist view: w is an unknown parameter vector, not a RV.
We assume that the n observations are iid.
Linear model: yi = w tx i + ηi , ηi ∼ N(0, σ2).
Observed yi generated from a normal distribution centered at w tx i .
Model predicts linear relationship between conditional expectation
of observations yi and inputs x i :

E [yi |x i ] = w0 + w1xi1 + · · ·+ wdxid = w tx i = f (x i ; w).
Note: the expectation operator is linear and E [ηi ] = 0.
Regression function = conditional expectation.
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LS and Maximum Likelihood

Likelihood function: conditional probability of all observed yi given
their explanation, treated as a function of the model parameters w :

L(w) ∝
∏

i
exp

[
− 1

2σ2 (yi −w tx i)2
]

Maximizing L = finding model that best explains observations:
ŵ = arg max

w
L(w) = arg min

w
[−L(w)] = arg min

w
[− log(L(w))]

= arg min
w

∑
i

(yi −w tx i)2

Least-squares fit = ML estimate under Gaussian error model.
ŵMLE minimizes the residual sum of squares

RSS(w) =
n∑

i=1
r2
i =

n∑
i=1

[yi − f (x i ; w)]2 = ∥y − Xw∥2.
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LS and Maximum Likelihood

Finding the optimal weights:
∂RSS(w)

∂w = ∂

∂w
[
y ty − 2y tXw + w tX tXw

] != 0

Using the following results from matrix calculus,
∂

∂x y tx = y

∂

∂x xtMx = 2Mx, if M is symmetric,

we finally arrrive at
ŵ = (X tX )−1X ty .
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Least squares regression: Geometry
The residual is r = y − Xw . Gradient at w = ŵ vanishes.

ŵ = (X tX )−1X ty ⇒ X t(y − X ŵ) = X tr = 0.

If follows that
∑n

i=1 Xij ri = 0, ∀j = 0, 1, . . . , d .

⇝ Residual is orthogonal to every input dimension X•j .

X[.,1]

X[.,2]

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman: The Elements of Statistical Learning Theory. Springer)
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Frequentist confidence limits

Recall: yi = f (x i ; w) + ηi , with independent Gaussian noise.
In matrix-vector form: y = Xw + η, with η ∼ N(0, σ2In).

ŵ = (X tX )−1X ty
= (X tX )−1X tXw + (X tX )−1X tη

= w + (X tX )−1X tη

⇒ ŵ −w = (X tX )−1X t η =: Aη

Linear functions of normals are normal:
η ∼ N(0, σ2In) ⇒ Aη ∼ N(0, σ2AAt).

Here: A = (X tX )−1X t ⇒ AAt = (X tX )−1

Conditioned on X and σ2:
ŵ −w |X , σ2 ∼ N

(
0, σ2(X tX )−1

)
.
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Frequentist confidence limits
Distribution completely specified ⇝ confidence limits:
For k-th component: ŵk − wk ∼ N(0, σ2Skk),
where Skk denotes the k-th diagonal element of (X tX )−1.
Thus, zk is standard normal

zk := (wk − ŵk)/
√

σ2Skk ∼ N(0, 1)
CDF:

P(zk < kc) = 1√
2π

∫ kc

−∞
e−t2/2 dt =: Φ(kc) = 1− c

Upper limit for wk :

P(zk < kc) = P(
√

σ2Skkzk <
√

σ2Skkkc)

= P(wk − (wk − ŵk) > wk −
√

σ2Skkkc)

= P(ŵk > wk −
√

σ2Skkkc)
= P(wk < ŵk +

√
σ2Skkkc) = 1− c.

Same argument for z ′
k = −zk ⇝ lower limit.
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Frequentist confidence limits
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Standard parametric rate

Assume we have estimated the parameters based on n samples:
(ŵn −w) ∼ N(0, σ2 (X tX

)−1)
= N(0, σ2 (X tX/n

)−1 · 1/n)
√

n(ŵn −w) ∼ N(0, σ2(X tX/n︸ ︷︷ ︸
n→∞→ Σ

)−1)

Since for n→∞, X tX/n→ Σ = const., this means that
ŵn converges to w at a rate of 1/

√
n.

This is a very general result that holds in an asymptotic sense even
without assuming normality, due to the central limit theorem.
Due to its universality, it is called the standard parametric rate.
Equivalent statement:
1/
√

n represents the magnitude of the estimation error.
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Basis functions
Can be generalized to model non-linear relationships by replacing x
with some non-linear function of the inputs, ϕ(x):

p(y |x) = N(w tϕ(x), σ2).
Predictions can be based on a linear combination of a set of basis
functions ϕ(x) = {g0(x), g1(x), . . . , gm(x)}, with gi(x) : Rd 7→ R.
Can model the intercept by setting g0(x) = 1:

f (x; w) = w0 + w1g1(x) + · · ·+ wmgm(x).
⇝ additive models
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Fig 1.7 in K. Murphy: Machine Learning. MIT Press 2012
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Additive models

Examples:
If x ∈ Rd and m = d + 1, g0(x) = 1 and gi(x) = xi , i = 1, . . . , d , then

f (x; w) = w0 + w1x1 + · · ·+ wdxd .

If x ∈ R, g0(x) = 1 and gi(x) = x i , i = 1, . . . , m, then
f (x ; w) = w0 + w1x1 + · · ·+ wmxm.

Basis functions can capture various properties of the inputs.
Example: Document analysis

x = text document (collection of words)

gi(x) =
{

1, if word i appears in the document
0, otherwise

f (x; w) = w0 +
∑

i∈words
wigi(x).
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Additive models cont’d

We can also make predictions by gauging the
similarity of examples to prototypes.
For example, our additive regression function could be

f (x; w) = w0 + w1g1(x) + · · ·+ wmgm(x),
where the basis functions are radial basis functions

gk(x) = exp(− 1
2σ2 ∥x − xk∥2)

measuring the similarity to the prototypes xk .
The variance σ2 controls how quickly the basis function vanishes as a
function of the distance to the prototype.
Training examples themselves could serve as prototypes.
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Additive models cont’d

Can view additive models graphically in terms of units and weights.

1

L(t, f )

ϕ1 = g1(x) ϕm = gm(x)

w1ϕ1 wmϕm

w0

t

f (w tϕ(x))

x1 x2

In Multi Layer Perceptrons the basis functions have adjustable
parameters.
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Example: Polynomial regression
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Complexity and overfitting

With limited training examples our polynomial regression model may
achieve zero training error but nevertheless has a large expected error.

training 1
n

n∑
i=1

(yi − f (x i ; ŵ)2 ≈ 0

expectation E(x,y)∼p (y − f (x; ŵ)2 ≫ 0

We suffer from over-fitting
⇝ should reconsider our model ⇝ model selection.

We will discuss model selection from a Bayesian perspective first.
A frequentist approach will follow later in the chapter on
statistical learning theory.
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Bayesian interpretation: priors

Suppose our generative model takes an input x ∈ Rd and maps it to
a real valued output y according to

p(y |x, w , σ2) = N(y |w tx, σ2)
We will keep σ2 fixed and only try to estimate w .
Given data D = {(x1, y1), . . . , (xn, yn)}, the likelihood function is

L(w ;D) =
n∏

i=1
N(yi |w tx i , σ2) =

n∏
i=1

1
Z exp

(
− 1

2σ2 (yi −w tx i)2
)

.

Predictions in classical regression based on maximizing parameters ŵ .
In Bayesian analysis we keep all regression functions ,
just weighted by their posterior probability:

p(y |x,D, σ2) =
∫

p(y |x, w , σ2)p(w |D, σ2) dw
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Bayesian regression: Prior and posterior

We specify our prior belief about the parameter values as p(w).
For instance, we could prefer small parameter values:

p(w) = N
(
w |0, τ2I

)
The smaller τ2 is, the smaller values of w we prefer
prior to seeing the data.
Posterior proportional to prior p(w) times likelihood:

p(w |D, ·) ∝ L(w ;D)p(w)
Here: posterior is Gaussian p(w |D, σ2) = N(w |wn, Vn) with
conditional mean wn and conditional covariance Vn (i.e. conditioned
on dataset of size n) given by

wn = (X tX + λI)−1X ty , Vn = σ2(X tX + λI)−1,

with λ = σ2

τ2 .
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Bayesian regression: Posterior computation

Given variables w ∈ Rd and y ∈ Rn, assume linear Gaussian system:

p(w) = N(w |µw , Σw ) (⇝ prior)
p(y |w) = N(y |Aw + b, Σy ) (⇝ likelihood)

The posterior is also Gaussian with conditional mean µw |y and
conditional covariance Σw |y :

p(w |y) = N(w |µw |y , Σw |y )
Σ−1

w |y = Σ−1
w + AtΣ−1

y A

µw |y = Σw |y
(
AtΣ−1

y (y − b) + Σ−1
w µw

)
.

Gaussian likelihood and Gaussian prior form a conjugate pair.
The normalization constant (denominator in Bayes formula) is

p(y) = N(y |Aµw + b, Σy + AΣw At).
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Bayesian regression: Posterior predictive

Prediction of y for new x: use posterior as weights for predictions
based on individual w ’s ⇝ Posterior predictive:

p(y |x,D, σ2) =
∫

p(y |x, w , σ2)p(w |D, σ2) dw

=
∫

N(y |xtw , σ2)N(w |wn, Vn) dw

= N(y |w t
nx, σ2

n(x)), with
σ2

n(x) = σ2 + xtVnx.

The variance in this prediction, σ2
n(x), depends on two terms:

▶ the variance of the observation noise, σ2

▶ the variance in the parameters, Vn
⇝ depends on how close x is to training data D
⇝ error bars get larger as we move away from training points.
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Bayesian regression: Posterior predictive
By contrast, the plugin approximation uses only the ML-parameter
estimate with the degenerate distribution p(w |D, σ2) = δŵ(w):
p(y |x,D, σ2) ≈

∫
p(y |x, w , σ2)δŵ(w) dw = p(y |x, ŵ , σ2) = N(y |xtŵ , σ2).
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Fig. 7.12 in K. Murphy: Machine Learning. MIT Press 2012. Example with quadratic basis functions: posterior predictive
distribution (mean and ±1σ).
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Sampling from posterior predictive
Left: plugin approximation: f (y) = ϕ(x)tŵ ,
where ϕ(x) is the expanded input vector (1, x , x2)t .
Right: sampled functions ϕ(x)tw (s), where w (s) are samples from the
posterior
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Fig. 7.12 in K. Murphy: Machine Learning. MIT Press 2012
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MAP approximation and ridge regression
Posterior proportional to prior p(w) = N

(
w |0, τ2I

)
times likelihood.

The MAP estimate is
wMAP = arg max{log[L(w ;D)] + log[p(w)]}

= arg min{− log[L(w ;D)]− log[p(w)]}

= arg min{ 1
2σ2

∑
i

(yi −w tx i)2 + 1
2τ2 w tw}

= arg min{
∑

i
(yi −w tx i)2 + σ2

τ2 w tw}

= arg min{
∑

i
(yi −w tx i)2 + λw tw}

In classical statistics, this is called ridge regression:
wMAP = w ridge = (X tX + λI)−1X ty .

In regularization theory, this is an example of
Tikhonov Regularization.

Volker Roth (University of Basel) Machine Learning 24 / 60



Bayesian regression (again)

Suppose our model within the model family F takes an input
x ∈ Rd and maps it to a real valued output y according to

p(y |x, w , σ2) = N(y ; w tx, σ2)
We will keep σ2 fixed and only try to estimate w .
Given data D = {(x1, y1), . . . , (xn, yn)}, define likelihood

L(w ;D) =
n∏

i=1
N(yi ; w tx i , σ2) =

n∏
i=1

1
Z exp

(
− 1

2σ2 (yi −w tx i)2
)

.

Predictions in classical regression based on maximizing parameters ŵ .
In Bayesian analysis we keep all regression functions ,
just weighted by their posterior probability:

p(y |x,D, σ2) =
∫

p(y |x, w , σ2)p(w |D, σ2) dw
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Bayesian regression (again)

We specify our prior belief about the parameter values as p(w |F).
For instance, we could prefer small parameter values:

p(w |F) = N(w ; 0, τ2I)
Small τ2 ⇝ small values w preferred prior to seeing the data.
Posterior proportional to prior times likelihood:

p(w |D, ·) = p(y |w , X )p(w |F)
p(y |F , X ) ∝ L(w ;D)p(w |F)

Normalization constant, a.k.a. marginal likelihood:

p(y |F , X ) =
∫

L(w ;D)︸ ︷︷ ︸
p(y |w ,X)

p(w |F)dw =
∫

p(y , w |F , X )dw ,

depends on model family F , but not on parameter values of a
specific model in the family.
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Example: Bayesian regression

Goal: choose among regression model families , specified by
different feature mappings (basis functions) x → ϕ(x).
Example: linear ϕ1(x) ∈ Rd1 and quadratic ϕ2(x) ∈ Rd2 .
For both families, we specify a Gaussian regression model:

Fi : p(y |x, w i , σ2) = N(y |w t
i ϕi(x), σ2), i ∈ {1, 2}.

Considering the posterior predictive, there are two possibilities:
▶ F too flexible: posterior requires many training examples before it

focuses on useful parameter values;
▶ F too simple: posterior concentrates quickly but the predictions

remain poor. But how can we formalize this intuition?
Posterior of model family: p(F|y , X ) ∝ p(y |F , X )P(F).
Pragmatic choice: Uniform prior over families ⇝ select the family
whose marginal likelihood (a.k.a. Bayesian score) is larger.
After seeing D, select family F1 if p(y |F1, X ) > p(y |F2, X ).
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Approximating the marginal likelihood

Problem: In most cases we cannot compute the marginal likelihood in
closed form ⇝ approximations are needed.
A specific approximation will lead to the
Bayesian Information Criterion (BIC) .
Key insight: when computing

p(y |F , X ) =
∫

L(w ;D)p(w |F)dw ,

the integrand is a product of two densities ⇝ integrand itself is an
unnormalized density.
Laplace’s approximation uses a clever trick to approximate such
integrals...
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Approximation details: Laplace’s Method

Assume unnormalized density p∗(θ) has peak
at θ̂. Goal: calculate normalizing constant

Zp =
∫

p∗(θ)dθ

Taylor-expand logarithm around θ̂:
ln p∗(θ) ≈ ln p∗(θ̂)− c

2(θ − θ̂)2 + · · · ,

where

c := − ∂2

∂θ2 ln p∗(θ)
∣∣
θ=θ̂

.

(note that first order term vanishes)

p∗(θ)

ln p∗(θ)
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Laplace’s Method (cont’d)

Approximate p∗(θ) by unnormalized Gaussian
Q∗(θ) := p∗(θ̂) exp

[
−c/2 · (θ − θ̂)2

]
A normalized Gaussian would be:

Q(θ | µ = θ̂, σ2) = 1
ZQ

exp
[
−(θ − θ̂)2

2σ2

]
,

with ZQ =
√

2πσ2

=
∫

exp
[
−1/(2σ2) · (θ − θ̂)2

]
dθ

Approximate Zp =
∫

p∗(θ) dθ by

Zp ≈
∫

Q∗(θ) dθ

= p∗(θ̂)
∫

exp
[
−c/2 · (θ − θ̂)2

]
dθ

= p∗(θ̂)
√

2π/c ⇝ c is the inverse variance

ln p∗(θ) & ln Q∗(θ)

p∗(θ) & Q∗(θ)
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Laplace’s Method (cont’d)

Multivariate generalization in d dimensions:
second derivative ⇝ Hessian matrix

Hij = ∂2 ln p∗(θ)
∂θi∂θj

∣∣∣∣
θ=θ̂

Zp ≈ p∗(θ̂)
∫

exp
[
−1

2(θ − θ̂)tH(θ − θ̂)
]

dθ

= p∗(θ̂)
√

(2π)d

|H| = p∗(θ̂)
∣∣∣∣ H
2π

∣∣∣∣− 1
2

,

where the last equation follows from the properties of the
determinant: |aM| = ad |M| for M ∈ Rd×d , a ∈ R.
Interpretation:
p(θ) is approximated by a Gaussian centered at the mode θ̂:

p(θ) ≈ N (θ|µ = θ̂, Σ = H−1).
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Bayesian Information Criterion (BIC)

p(D|F) =
∫

p(D|w) · p(w |F)dw

≈ p(D|w∗) · p(w∗|F)|H/(2π)|− 1
2

flat prior
≈ p(D|ŵ)|H/(2π)|− 1

2

log p(D|F) ≈ log p(D|ŵ)− 1
2 log |H|+ C , with ŵ = wMLE in F .

Focus on last term:
H =

∑n
i=1

Hi , with Hi = ∇w∇w log p(Di |w).
Let’s approximate each Hi with a fixed matrix H ′

log |H| = log |nH ′| = log(nd |H ′|) = d log n + log(|H ′|).
For model family selection , last term is irrelevant constant,
because it is independent of F and n:

log p(D|F) + C ′ ≈ log p(D|ŵ)− d
2 log n =: BIC(F , n|D).
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Intuitive interpretation of BIC
The Shannon information content of a specific outcome a of a
random experiment is

h(a) = − log2 P(a) = log 1
P(a) .

It measures the “surprise” (in bits):
Outcomes that are less probable have larger values of surprise.
Information theory: Can find a code so that the number of bits
used to encode each symbol a ∈ A is essentially − log2 P(a).
Here:

−BIC(F , n|D) =

DL of observations given model︷ ︸︸ ︷
n∑

i=1

− log2 p(yi |x i , ŵ)︸ ︷︷ ︸
surprise of yi

 + d
2 log2(n)

The sum of surprises of all observations is the description length of
the observations given the (most probable) model in F .
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Intuitive interpretation of BIC
Second term: DL of the model. Intuitive explanation:

The model, i.e. ŵ ∈ Rd , was estimated based on n samples.
Can quantize every component into

√
n levels. Why?

Recall the standard parametric rate:
√

n(ŵn −w) ∼ N(0, σ2(X tX/n︸ ︷︷ ︸
n→∞→ Σ

)−1)

⇝ ŵn converges to true w at a rate of 1/
√

n

⇝ 1/
√

n represents the magnitude of the estimation error

⇝ no need for encoding with greater precision:
▶ Assume w ∈ R, and range of w rescaled to unit interval [0, 1].
▶ Instead of communicating exact numerical value of ŵn over the

communication channel, we can partition the unit interval into√
n bins and communicate only the number of the bin.
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Intuitive interpretation of BIC

In Rd : Grid of (
√

n)d possible values for describing the model.
We only need log2((

√
n)d) = log2 n(d/2) = (d/2) log2 n bits to

encode ŵ with sufficient precision.
In summary:

−BIC = − log2 p(D|ŵ) + d
2 log2 n

= DL(data|model) + DL(model).

Maximizing BIC = minimizing the joint DL of data and model
⇝ Minimum Description Length principle.

Volker Roth (University of Basel) Machine Learning 42 / 60



Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
ϕ1(x) = (1, x1, x2)t , ϕ2(x) = (1, x1, x2, (x1 + x2)2)t .

−BIC =
n∑

i=1
(− log2 p(yi |x i , ŵ)) + d

2 log2(n)

−3 −2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

degree #(param) DL(data|model) DL(model) BIC score
1 3 16.36 bits 9.97 bits -26.33
2 4 15.77 bits 13.29 bits -29.06
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
ϕ1(x) = (1, x1, x2)t , ϕ2(x) = (1, x1, x2, (x1 + x2)2)t .

−BIC =
n∑

i=1
(− log2 p(yi |x i , ŵ)) + d

2 log2(n)

−4 −2 0 2 4 6

−
4

−
2

0
2

degree #(param) DL(data|model) DL(model) BIC score
1 3 58.56 bits 9.97 bits -68.53
2 4 38.05 bits 13.29 bits -51.34
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Sparse Models

Sometimes, we have many more dimensions d than training cases n.
Corresponding design matrix X is “short and fat”, rather than
“tall and skinny”.
This is called small n , large d problem .
For example, with gene microarrays , it is common to measure the
expression levels of d ≈ 20, 000 genes, but to only get n ≈ 100
samples (for instance, from 100 patients).
Q: what is the smallest set of features that can accurately predict
the response in order to prevent overfitting , to reduce the cost of
building a diagnostic device, or to help with scientific insight into
the problem?
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Bayesian variable selection

Let γj = 1 if feature j is relevant, and let γj = 0 otherwise.
Our goal is to compute the posterior over models

p(γ|D) ∝ p(D|γ)p(γ)
Example: generate n = 20 samples from a d = 10 dimensional linear
model, yi ∼ N(w txi , σ2), in which K = 5 elements of w are non-zero.
Enumerate all 210 = 1024 models. Note that a model is expressed as
a specific sparsity pattern via a bit string, such as

(0, 1, 1, 0, 0, 1, 0, 1, 1, 0).
Then, compute p(γ|D) for each one.
Interpreting the posterior over a large number of models is difficult
⇝ seek summary statistics.
Natural choice: MAP estimate: γ̂ = arg maxγ p(γ|D).
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Bayesian variable selection
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Fig 13.1 in K. Murphy: Machine Learning. MIT Press 2012. Posterior over all
1024 models. Vertical scale has been truncated at 0.1 for clarity.
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Bayesian variable selection

The above example illustrates the gold standard for variable
selection: the problem was small (d = 10)
⇝ we were able to compute the full posterior exactly.
Of course, variable selection is most useful in the cases where the
number of dimensions is large.
There are 2d possible models (bit vectors)
⇝ impossible to compute the full posterior in general.
Even finding summaries is intractable
⇝ algorithmic speedups necessary.
But first, focus on the computation of the posterior p(γ|D).
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The spike and slab model

The posterior is given by
p(γ|D) ∝ p(γ)p(D|γ)

It is common to use the following prior:

p(γ) =
d∏

j=1
Ber(γj |π0) = π

∥γ∥0
0 (1− π0)d−∥γ∥0 ,

log p(γ|π0) = −λ∥γ∥0 + const.,

where π0 is the probability that a feature is relevant,
and ∥γ∥0 =

∑d
j=1 γj is the ℓ0 pseudo-norm ,

i.e., the number of non-zero elements.
λ = log 1−π0

π0
controls the sparsity of the model.

Setting σ2 = 1, we can write the (marginal) likelihood as follows:

p(D|γ) = p(y |X , γ) =
∫

p(y |X , w , γ)p(w |γ) dw
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The spike and slab model

Focus on prior p(w |γ). If γj = 0, feature j is irrelevant, so we expect
wj = 0. If γj = 1, we expect wj to be non-zero.
Assume a Gaussian prior, N(0, σ2

w ), where σ2
w reflects our

expectation of the coefficients associated with the relevant variables:

p(wj |γj) =
{

δ0(wj) , if γj = 0
N(wj |0, σ2

w ) , else
The first term is a spike at the origin.
As σ2

w →∞, the distribution p(wj |γj = 1) approaches a uniform
distribution ⇝ second term is slab of constant height.
Spike and slab model (Mitchell and Beauchamp 1988).
Full Bayesian treatment is computationally challenging!
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Simplifying the model

Assume σ2
w →∞ (⇝ uniform prior p(wj |γj) over nonzero

components) and approximate the likelihood using BIC:

log p(D|γ) =
∫

p(y |X , w , γ)p(w |γ) dw

≈ log p(y |X , ŵγ)− 1
2 ∥ŵγ∥0︸ ︷︷ ︸

”effective” dimension

log n,

where ŵγ is the ML estimate.
Another view of this model: select ŵ by minimizing the negative log
likelihood under a ℓ0 penalty:

minimize − log p(y |X , w) + λ∥w∥0.

Practical problem: ℓ0 pseudo-norm is highly non-convex!
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Vector norms
The vector p-norms (ℓp norms) are defined by

∥x∥p =
( n∑

i=1
|xi |p

)1/p

, 1 ≤ p ≤ ∞,

∥x∥∞ = max(|x1|, · · · |xn|).

Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655
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Simplifying the model further

ℓ0 penalty ⇝ combinatorial optimization problem
When we have many variables, it is computationally difficult to find
the the minimizer of − log p(y |X , w) + λ∥w∥0.
Idea: replace discrete variables with continuous ones. Use continuous
priors that “encourage” wj = 0 by putting a lot of probability density
near the origin, such as a zero-mean Laplace distribution.

p(w |λ) =
d∏

j=1
Lap(wj |0, 1/λ) ∝

d∏
j=1

exp(−λ|wj |)

Let us perform MAP estimation with this prior:
f (w) = − log p(D|w)− log p(w |λ) = NLL(w) + λ∥w∥1.

where ∥w∥1 =
∑d

j=1 |wj | is the ℓ1 norm of w and NNL means
negative log-likelihood.

Volker Roth (University of Basel) Machine Learning 53 / 60



The Lasso

Can be thought of as a convex approximation to the ℓ0 norm.
For suitably large λ, the estimate ŵ will still be sparse.
This model has the colorful name least absolute shrinkage and
selection operator.
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The Lasso
Unfortunately, the ∥w∥1 term is not differentiable at 0
⇝ convex, but non-smooth optimization problem.
The subderivative or subgradient of a (convex) function
f : I → R at a point x0 is a scalar c such that

f (x)− f (x0) ≥ c(x − x0), ∀x ∈ I
where I is some interval containing x0.
Note that c is a linear lower bound to f at x0.

X
0

X

c(x − x
0
)

f(x) − f(x
0
)

c’

c

Fig. 13.4 in K. Murphy: Machine Learning. MIT Press 2012
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The Lasso

The set of all subderivatives is called the subdifferential
For the absolute value function f (x) = |x |:

∂f (x) =


−1 , if x < 0
[−1, 1] , if x = 0
+1 , if x > 0

For least-squares regression, it is easy to show that
∂

∂wj
RSS(w) = ajwj − cj

aj = 2
n∑

i=1
x2

ij

cj = 2
n∑

i=1
xij(yi −w t

−jx i ,−j).

where w−j is w without component j .
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The Lasso

cj is (proportional to) the correlation between the j ’th feature
x ·j = (x1j , x2j , . . . , xnj)t and the residual due to other features:

cj ∝ xt
·jr (−j) , with r (−j) = y − X−j︸︷︷︸

X w/o j-th col

w−j .

Recall that the residual from the least squares estimate is
orthogonal to every input feature.
⇝ magnitude of cj indicates how relevant feature j is,

relative to all other features.
Adding the ℓ1 penalty term:

∂wj f (w) = (ajwj − cj) + λ∂wj∥w∥1

=


ajwj − cj − λ , if wj < 0
[−cj − λ,−cj + λ] , if wj = 0
ajwj − cj + λ , if wj > 0
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The Lasso

Depending on the value of cj , the solution to ∂wj f (w) = 0 can occur
at three different values of wj :

ŵj =


(cj + λ)/aj , if cj < −λ

0 , if cj ∈ [−λ, λ]
(cj − λ)/aj , if cj > λ

We can write this as follows:

ŵj = soft
(

cj
aj

; λ

aj

)
,

where soft(a; δ) = sign(a)(|a| − δ)+

and x+ = max(x , 0) is the positive part of x .
This is called soft thresholding.
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The Lasso
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Fig. 13.5 in K. Murphy: Machine Learning. MIT Press 2012.
Black line: Least squares fit wk = ck/ak .
The red line (the regularized estimate) ŵk(ck), shifts the black line down (or up)
by λ, except when −λ ≤ ck ≤ λ, in which case it sets wk = 0.
By contrast, hard thresholding sets values of wk to 0 if −λ ≤ ck ≤ λ,
but it does not shrink the values of wk outside of this interval.
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Lasso Algorithms: Coordinate-wise Descent
Sometimes it is hard to optimize all variables simultaneously, but it is easy
to optimize them one by one. Assume that we can efficiently solve for
the j-th coefficient wj with all other coefficients held fixed:
ŵj = arg minz f (w + zej), where ej is the j-th unit vector.
Then cycle through these component-wise updates.
For the Lasso, this is particularly simple:
for j = 1, . . . , d do:

aj = 2
n∑

i=1
x2

ij

cj = 2
n∑

i=1
xij(yi −w t

−jx i ,−j)

ŵj = soft
(

cj
aj

; λ

aj

)
.
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