Machine Learning

Volker Roth

Department of Mathematics \& Computer Science
University of Basel

Chapter 4: Regression

Least-squares fit (red) and two lines with slopes according to upper (lower) 95\% confidence limit (green).

Regression basics

- In regression we assume that a response variable $y \in \mathbb{R}$ is a noisy function of the input variable $x \in \mathbb{R}^{d}$.

$$
y=f(x)+\eta
$$

- We often assume that f is linear, $f(\boldsymbol{x})=\boldsymbol{w}^{t} \boldsymbol{x}$, and that η has a zero-mean Gaussian distribution with constant variance, $\eta \sim N\left(0, \sigma^{2}\right)$.
- This is can equivalently be written as

$$
p(y \mid \boldsymbol{x})=N\left(\mu(\boldsymbol{x}), \sigma^{2}\right), \text { with } \mu(\boldsymbol{x})=\boldsymbol{w}^{t} \boldsymbol{x}
$$

- In one dimension: $\mu(\boldsymbol{x})=w_{0}+w_{1} x$ and $\boldsymbol{x}=(1, x)$.
w_{0} is the intercept or bias term and w_{1} is the slope.
- If $w_{1}>0$, we expect the output to increase as the input increases.

Least Squares and Maximum Likelihood

- Fit n data points $\left(\boldsymbol{x}_{i}, y_{i}\right)$ to a model that has $d+1$ parameters $w_{j}, j=0, \ldots, d$.
- Notation: $\boldsymbol{x} \leftarrow(1, \boldsymbol{x}) \rightsquigarrow w_{0}$ is the intercept.
- Frequentist view: \boldsymbol{w} is an unknown parameter vector, not a RV.
- We assume that the n observations are iid.
- Linear model: $y_{i}=\boldsymbol{w}^{t} \boldsymbol{x}_{i}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)$.

Observed y_{i} generated from a normal distribution centered at $\boldsymbol{w}^{t} \boldsymbol{x}_{i}$.

- Model predicts linear relationship between conditional expectation of observations y_{i} and inputs \boldsymbol{x}_{i} :

$$
E\left[y_{i} \mid \boldsymbol{x}_{i}\right]=w_{0}+w_{1} x_{i 1}+\cdots+w_{d} x_{i d}=\boldsymbol{w}^{t} \boldsymbol{x}_{i}=f\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)
$$

Note: the expectation operator is linear and $E\left[\eta_{i}\right]=0$. Regression function $=$ conditional expectation.

LS and Maximum Likelihood

- Likelihood function: conditional probability of all observed y_{i} given their explanation, treated as a function of the model parameters \boldsymbol{w} :

$$
L(\boldsymbol{w}) \propto \prod_{i} \exp \left[-\frac{1}{2 \sigma^{2}}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}\right]
$$

- Maximizing $L=$ finding model that best explains observations:

$$
\begin{aligned}
\hat{\boldsymbol{w}} & =\arg \max _{\boldsymbol{w}} L(\boldsymbol{w})=\arg \min _{w}[-L(\boldsymbol{w})]=\arg \min _{\boldsymbol{w}}[-\log (L(\boldsymbol{w}))] \\
& =\arg \min _{\boldsymbol{w}} \sum_{i}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}
\end{aligned}
$$

Least-squares fit $=$ ML estimate under Gaussian error model.

- $\hat{\boldsymbol{w}}_{\text {MLE }}$ minimizes the residual sum of squares

$$
R S S(\boldsymbol{w})=\sum_{i=1}^{n} r_{i}^{2}=\sum_{i=1}^{n}\left[y_{i}-f\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)\right]^{2}=\|\boldsymbol{y}-X \boldsymbol{w}\|^{2}
$$

LS and Maximum Likelihood

- Finding the optimal weights:

$$
\frac{\partial R S S(\boldsymbol{w})}{\partial \boldsymbol{w}}=\frac{\partial}{\partial \boldsymbol{w}}\left[\boldsymbol{y}^{t} \boldsymbol{y}-2 \boldsymbol{y}^{t} X \boldsymbol{w}+\boldsymbol{w}^{t} X^{t} X \boldsymbol{w}\right] \stackrel{!}{=} \mathbf{0}
$$

- Using the following results from matrix calculus,

$$
\begin{aligned}
\frac{\partial}{\partial \boldsymbol{x}} \boldsymbol{y}^{t} \boldsymbol{x} & =\boldsymbol{y} \\
\frac{\partial}{\partial \boldsymbol{x}} \boldsymbol{x}^{t} M \boldsymbol{x} & =2 M \boldsymbol{x}, \text { if } M \text { is symmetric }
\end{aligned}
$$

we finally arrrive at

$$
\hat{\boldsymbol{w}}=\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{y}
$$

Least squares regression: Geometry

The residual is $\boldsymbol{r}=\boldsymbol{y}-X \boldsymbol{w}$. Gradient at $\boldsymbol{w}=\hat{\boldsymbol{w}}$ vanishes.

$$
\hat{\boldsymbol{w}}=\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{y} \Rightarrow X^{t}(\boldsymbol{y}-X \hat{\boldsymbol{w}})=X^{t} \boldsymbol{r}=\mathbf{0} .
$$

If follows that $\sum_{i=1}^{n} X_{i j} r_{i}=0, \forall j=0,1, \ldots, d$.
\rightsquigarrow Residual is orthogonal to every input dimension $X_{\bullet j}$.

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman: The Elements of Statistical Learning Theory. Springer)

Frequentist confidence limits

- Recall: $y_{i}=f\left(\boldsymbol{x}_{i} ; \boldsymbol{w}\right)+\eta_{i}$, with independent Gaussian noise.
- In matrix-vector form: $\boldsymbol{y}=X \boldsymbol{w}+\boldsymbol{\eta}$, with $\boldsymbol{\eta} \sim N\left(\mathbf{0}, \sigma^{2} I_{n}\right)$.

$$
\begin{aligned}
\hat{\boldsymbol{w}} & =\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{y} \\
& =\left(X^{t} X\right)^{-1} X^{t} X \boldsymbol{w}+\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{\eta} \\
& =\boldsymbol{w}+\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{\eta} \\
\Rightarrow \quad \hat{\boldsymbol{w}}-\boldsymbol{w} & =\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{\eta}=: A \boldsymbol{\eta}
\end{aligned}
$$

- Linear functions of normals are normal:

$$
\boldsymbol{\eta} \sim N\left(\mathbf{0}, \sigma^{2} I_{n}\right) \Rightarrow A \boldsymbol{\eta} \sim N\left(\mathbf{0}, \sigma^{2} A A^{t}\right)
$$

Here: $A=\left(X^{t} X\right)^{-1} X^{t} \Rightarrow A A^{t}=\left(X^{t} X\right)^{-1}$

- Conditioned on X and σ^{2} :

$$
\hat{\boldsymbol{w}}-\boldsymbol{w} \mid X, \sigma^{2} \sim N\left(\mathbf{0}, \sigma^{2}\left(X^{t} X\right)^{-1}\right)
$$

Frequentist confidence limits

- Distribution completely specified \rightsquigarrow confidence limits:

For k-th component: $\hat{w}_{k}-w_{k} \sim N\left(0, \sigma^{2} S^{k k}\right)$, where $S^{k k}$ denotes the k-th diagonal element of $\left(X^{t} X\right)^{-1}$.

- Thus, z_{k} is standard normal

$$
z_{k}:=\left(w_{k}-\hat{w}_{k}\right) / \sqrt{\sigma^{2} S^{k k}} \sim N(0,1)
$$

- CDF:

$$
P\left(z_{k}<k_{c}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{k_{c}} e^{-t^{2} / 2} d t=: \Phi\left(k_{c}\right)=1-c
$$

- Upper limit for w_{k} :

$$
\begin{aligned}
P\left(z_{k}<k_{c}\right) & =P\left(\sqrt{\sigma^{2} S^{k k}} z_{k}<\sqrt{\sigma^{2} S^{k k}} k_{c}\right) \\
& =P\left(w_{k}-\left(w_{k}-\hat{w}_{k}\right)>w_{k}-\sqrt{\sigma^{2} S^{k k}} k_{c}\right) \\
& =P\left(\hat{w}_{k}>w_{k}-\sqrt{\sigma^{2} S^{k k}} k_{c}\right) \\
& =P\left(w_{k}<\hat{w}_{k}+\sqrt{\sigma^{2} S^{k k}} k_{c}\right)=1-c .
\end{aligned}
$$

- Same argument for $z_{k}^{\prime}=-z_{k} \rightsquigarrow$ lower limit.

Frequentist confidence limits

Least-squares fit (red) and two lines with slopes according to upper (lower) 95\% confidence limit (green).

Standard parametric rate

- Assume we have estimated the parameters based on n samples:

$$
\begin{aligned}
\left(\hat{\boldsymbol{w}}_{n}-\boldsymbol{w}\right) & \sim N\left(\mathbf{0}, \sigma^{2}\left(X^{t} X\right)^{-1}\right) \\
& =N\left(\mathbf{0}, \sigma^{2}\left(X^{t} X / n\right)^{-1} \cdot 1 / n\right) \\
\sqrt{n}\left(\hat{\boldsymbol{w}}_{n}-\boldsymbol{w}\right) & \sim N(\mathbf{0}, \sigma^{2}(\underbrace{-1}_{\substack{X^{t} X / n}})
\end{aligned}
$$

- Since for $n \rightarrow \infty, X^{t} X / n \rightarrow \Sigma=$ const., this means that $\hat{\boldsymbol{w}}_{n}$ converges to \boldsymbol{w} at a rate of $1 / \sqrt{n}$.
- This is a very general result that holds in an asymptotic sense even without assuming normality, due to the central limit theorem.
- Due to its universality, it is called the standard parametric rate.
- Equivalent statement:
$1 / \sqrt{n}$ represents the magnitude of the estimation error.

Basis functions

- Can be generalized to model non-linear relationships by replacing \boldsymbol{x} with some non-linear function of the inputs, $\phi(\boldsymbol{x})$:

$$
p(y \mid \boldsymbol{x})=N\left(\boldsymbol{w}^{t} \boldsymbol{\phi}(\boldsymbol{x}), \sigma^{2}\right)
$$

- Predictions can be based on a linear combination of a set of basis functions $\boldsymbol{\phi}(\boldsymbol{x})=\left\{g_{0}(\boldsymbol{x}), g_{1}(\boldsymbol{x}), \ldots, g_{m}(\boldsymbol{x})\right\}$, with $g_{i}(\boldsymbol{x}): \mathbb{R}^{d} \mapsto \mathbb{R}$. Can model the intercept by setting $g_{0}(\boldsymbol{x})=1$:

$$
f(\boldsymbol{x} ; \boldsymbol{w})=w_{0}+w_{1} g_{1}(\boldsymbol{x})+\cdots+w_{m} g_{m}(\boldsymbol{x})
$$

\rightsquigarrow additive models

Fig 1.7 in K. Murphy: Machine Learning. MIT Press 2012

Additive models

- Examples:

$$
\text { If } x \in \mathbb{R}^{d} \text { and } m=d+1, g_{0}(\boldsymbol{x})=1 \text { and } g_{i}(\boldsymbol{x})=x_{i}, i=1, \ldots, d \text {, then }
$$

$$
f(\boldsymbol{x} ; \boldsymbol{w})=w_{0}+w_{1} x_{1}+\cdots+w_{d} x_{d} .
$$

If $x \in \mathbb{R}, g_{0}(\boldsymbol{x})=1$ and $g_{i}(x)=x^{i}, i=1, \ldots, m$, then

$$
f(x ; \boldsymbol{w})=w_{0}+w_{1} x^{1}+\cdots+w_{m} x^{m} .
$$

- Basis functions can capture various properties of the inputs. Example: Document analysis

$$
\begin{aligned}
\boldsymbol{x} & =\text { text document (collection of words) } \\
g_{i}(\boldsymbol{x}) & = \begin{cases}1, & \text { if word } \mathrm{i} \text { appears in the document } \\
0, & \text { otherwise }\end{cases} \\
f(\boldsymbol{x} ; \boldsymbol{w}) & =w_{0}+\sum_{i \in \text { words }} w_{i} g_{i}(\boldsymbol{x})
\end{aligned}
$$

Additive models cont'd

- We can also make predictions by gauging the similarity of examples to prototypes.
- For example, our additive regression function could be

$$
f(\boldsymbol{x} ; \boldsymbol{w})=w_{0}+w_{1} g_{1}(\boldsymbol{x})+\cdots+w_{m} g_{m}(\boldsymbol{x})
$$

where the basis functions are radial basis functions

$$
g_{k}(\boldsymbol{x})=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|\boldsymbol{x}-\boldsymbol{x}_{k}\right\|^{2}\right)
$$

measuring the similarity to the prototypes \boldsymbol{x}_{k}.

- The variance σ^{2} controls how quickly the basis function vanishes as a function of the distance to the prototype.
- Training examples themselves could serve as prototypes.

Additive models cont'd

Can view additive models graphically in terms of units and weights.

In Multi Layer Perceptrons the basis functions have adjustable parameters.

Example: Polynomial regression

Polynomial basis functions. Degree $=1$

Polynomial basis functions. Degree $=8$

Polynomial basis functions. Degree $=3$

Polynomial basis functions. Degree $=10$

Complexity and overfitting

With limited training examples our polynomial regression model may achieve zero training error but nevertheless has a large expected error.
training $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\boldsymbol{x}_{i} ; \hat{\boldsymbol{w}}\right)^{2} \approx 0\right.$
expectation $\quad E_{(x, y) \sim p}\left(y-f(\boldsymbol{x} ; \hat{\boldsymbol{w}})^{2} \gg 0\right.$

We suffer from over-fitting
\rightsquigarrow should reconsider our model \rightsquigarrow model selection.
We will discuss model selection from a Bayesian perspective first.
A frequentist approach will follow later in the chapter on statistical learning theory.

Bayesian interpretation: priors

- Suppose our generative model takes an input $\boldsymbol{x} \in \mathbb{R}^{d}$ and maps it to a real valued output y according to

$$
p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right)=N\left(y \mid \boldsymbol{w}^{t} \boldsymbol{x}, \sigma^{2}\right)
$$

- We will keep σ^{2} fixed and only try to estimate \boldsymbol{w}.
- Given data $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$, the likelihood function is

$$
L(\boldsymbol{w} ; \mathcal{D})=\prod_{i=1}^{n} N\left(y_{i} \mid \boldsymbol{w}^{t} \boldsymbol{x}_{i}, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{Z} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}\right) .
$$

- Predictions in classical regression based on maximizing parameters $\hat{\boldsymbol{w}}$.
- In Bayesian analysis we keep all regression functions, just weighted by their posterior probability:

$$
p\left(y \mid \boldsymbol{x}, \mathcal{D}, \sigma^{2}\right)=\int p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right) p\left(\boldsymbol{w} \mid \mathcal{D}, \sigma^{2}\right) d \boldsymbol{w}
$$

Bayesian regression: Prior and posterior

- We specify our prior belief about the parameter values as $p(\boldsymbol{w})$. For instance, we could prefer small parameter values:

$$
p(\boldsymbol{w})=N\left(\boldsymbol{w} \mid 0, \tau^{2} l\right)
$$

The smaller τ^{2} is, the smaller values of \boldsymbol{w} we prefer prior to seeing the data.

- Posterior proportional to prior $p(\boldsymbol{w})$ times likelihood:

$$
p(\boldsymbol{w} \mid \mathcal{D}, \cdot) \propto L(\boldsymbol{w} ; \mathcal{D}) p(\boldsymbol{w})
$$

- Here: posterior is Gaussian $p\left(\boldsymbol{w} \mid \mathcal{D}, \sigma^{2}\right)=N\left(\boldsymbol{w} \mid \boldsymbol{w}_{n}, V_{n}\right)$ with conditional mean \boldsymbol{w}_{n} and conditional covariance V_{n} (i.e. conditioned on dataset of size n) given by

$$
\boldsymbol{w}_{n}=\left(X^{t} X+\lambda I\right)^{-1} X^{t} \boldsymbol{y}, \quad V_{n}=\sigma^{2}\left(X^{t} X+\lambda I\right)^{-1}
$$

with $\lambda=\frac{\sigma^{2}}{\tau^{2}}$.

Bayesian regression: Posterior computation

Given variables $\boldsymbol{w} \in \mathbb{R}^{d}$ and $\boldsymbol{y} \in \mathbb{R}^{n}$, assume linear Gaussian system:

$$
\begin{aligned}
p(\boldsymbol{w}) & =N\left(\boldsymbol{w} \mid \boldsymbol{\mu}_{w}, \Sigma_{w}\right) \quad(\rightsquigarrow \text { prior }) \\
p(\boldsymbol{y} \mid \boldsymbol{w}) & =N\left(\boldsymbol{y} \mid A \boldsymbol{w}+\boldsymbol{b}, \Sigma_{y}\right) \quad(\rightsquigarrow \text { likelihood })
\end{aligned}
$$

- The posterior is also Gaussian with conditional mean $\boldsymbol{\mu}_{w \mid y}$ and conditional covariance $\Sigma_{w \mid y}$:

$$
\begin{aligned}
p(\boldsymbol{w} \mid \boldsymbol{y}) & =N\left(\boldsymbol{w} \mid \boldsymbol{\mu}_{w \mid y}, \Sigma_{w \mid y}\right) \\
\Sigma_{w \mid y}^{-1} & =\Sigma_{w}^{-1}+A^{t} \Sigma_{y}^{-1} A \\
\boldsymbol{\mu}_{w \mid y} & =\Sigma_{w \mid y}\left(A^{t} \Sigma_{y}^{-1}(\boldsymbol{y}-\boldsymbol{b})+\Sigma_{w}^{-1} \boldsymbol{\mu}_{w}\right) .
\end{aligned}
$$

Gaussian likelihood and Gaussian prior form a conjugate pair.

- The normalization constant (denominator in Bayes formula) is

$$
p(\boldsymbol{y})=N\left(\boldsymbol{y} \mid A \boldsymbol{\mu}_{w}+\boldsymbol{b}, \Sigma_{y}+A \Sigma_{w} A^{t}\right)
$$

Bayesian regression: Posterior predictive

- Prediction of y for new \boldsymbol{x} : use posterior as weights for predictions based on individual \boldsymbol{w} 's \rightsquigarrow Posterior predictive:

$$
\begin{aligned}
p\left(y \mid \boldsymbol{x}, \mathcal{D}, \sigma^{2}\right) & =\int p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right) p\left(\boldsymbol{w} \mid \mathcal{D}, \sigma^{2}\right) d \boldsymbol{w} \\
& =\int N\left(y \mid \boldsymbol{x}^{t} \boldsymbol{w}, \sigma^{2}\right) N\left(\boldsymbol{w} \mid \boldsymbol{w}_{n}, V_{n}\right) d \boldsymbol{w} \\
& =N\left(y \mid \boldsymbol{w}_{n}^{t} \boldsymbol{x}, \sigma_{n}^{2}(\boldsymbol{x})\right), \text { with } \\
\sigma_{n}^{2}(\boldsymbol{x}) & =\sigma^{2}+\boldsymbol{x}^{t} V_{n} \boldsymbol{x} .
\end{aligned}
$$

- The variance in this prediction, $\sigma_{n}^{2}(\boldsymbol{x})$, depends on two terms:
- the variance of the observation noise, σ^{2}
- the variance in the parameters, V_{n}
\rightsquigarrow depends on how close \boldsymbol{x} is to training data \mathcal{D}
\rightsquigarrow error bars get larger as we move away from training points.

Bayesian regression: Posterior predictive

- By contrast, the plugin approximation uses only the ML-parameter estimate with the degenerate distribution $p\left(\boldsymbol{w} \mid \mathcal{D}, \sigma^{2}\right)=\delta_{\hat{\boldsymbol{w}}}(\boldsymbol{w})$: $p\left(\boldsymbol{y} \mid \boldsymbol{x}, \mathcal{D}, \sigma^{2}\right) \approx \int p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right) \delta_{\hat{w}}(\boldsymbol{w}) d \boldsymbol{w}=p\left(y \mid \boldsymbol{x}, \hat{\boldsymbol{w}}, \sigma^{2}\right)=N\left(y \mid \boldsymbol{x}^{t} \hat{\boldsymbol{w}}, \sigma^{2}\right)$.

Fig. 7.12 in K. Murphy: Machine Learning. MIT Press 2012. Example with quadratic basis functions: posterior predictive distribution (mean and $\pm 1 \sigma$).

Sampling from posterior predictive

Left: plugin approximation: $f(y)=\phi(\boldsymbol{x})^{t} \hat{\boldsymbol{w}}$, where $\phi(\boldsymbol{x})$ is the expanded input vector $\left(1, x, x^{2}\right)^{t}$.
Right: sampled functions $\boldsymbol{\phi}(\boldsymbol{x})^{t} \boldsymbol{w}^{(s)}$, where $w^{(s)}$ are samples from the posterior

MAP approximation and ridge regression

- Posterior proportional to prior $p(\boldsymbol{w})=N\left(\boldsymbol{w} \mid 0, \tau^{2} I\right)$ times likelihood.
- The MAP estimate is

$$
\begin{aligned}
\boldsymbol{w}_{\mathrm{MAP}} & =\arg \max \{\log [L(\boldsymbol{w} ; \mathcal{D})]+\log [p(\boldsymbol{w})]\} \\
& =\arg \min \{-\log [L(\boldsymbol{w} ; \mathcal{D})]-\log [p(\boldsymbol{w})]\} \\
& =\arg \min \left\{\frac{1}{2 \sigma^{2}} \sum_{i}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}+\frac{1}{2 \tau^{2}} \boldsymbol{w}^{t} \boldsymbol{w}\right\} \\
& =\arg \min \left\{\sum_{i}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}+\frac{\sigma^{2}}{\tau^{2}} \boldsymbol{w}^{t} \boldsymbol{w}\right\} \\
& =\arg \min \left\{\sum_{i}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}+\lambda \boldsymbol{w}^{t} \boldsymbol{w}\right\}
\end{aligned}
$$

- In classical statistics, this is called ridge regression:

$$
\boldsymbol{w}_{\mathrm{MAP}}=\boldsymbol{w}_{\text {ridge }}=\left(X^{t} X+\lambda I\right)^{-1} X^{t} \boldsymbol{y}
$$

- In regularization theory, this is an example of

Tikhonov Regularization.

Bayesian regression (again)

- Suppose our model within the model family \mathcal{F} takes an input $\boldsymbol{x} \in \mathbb{R}^{d}$ and maps it to a real valued output y according to

$$
p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right)=N\left(y ; \boldsymbol{w}^{t} \boldsymbol{x}, \sigma^{2}\right)
$$

- We will keep σ^{2} fixed and only try to estimate \boldsymbol{w}.
- Given data $\mathcal{D}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$, define likelihood

$$
L(\boldsymbol{w} ; \mathcal{D})=\prod_{i=1}^{n} N\left(y_{i} ; \boldsymbol{w}^{t} \boldsymbol{x}_{i}, \sigma^{2}\right)=\prod_{i=1}^{n} \frac{1}{Z} \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\boldsymbol{w}^{t} \boldsymbol{x}_{i}\right)^{2}\right) .
$$

- Predictions in classical regression based on maximizing parameters $\hat{\boldsymbol{w}}$.
- In Bayesian analysis we keep all regression functions, just weighted by their posterior probability:

$$
p\left(y \mid \boldsymbol{x}, \mathcal{D}, \sigma^{2}\right)=\int p\left(y \mid \boldsymbol{x}, \boldsymbol{w}, \sigma^{2}\right) p\left(\boldsymbol{w} \mid \mathcal{D}, \sigma^{2}\right) d \boldsymbol{w}
$$

Bayesian regression (again)

- We specify our prior belief about the parameter values as $p(\boldsymbol{w} \mid \mathcal{F})$. For instance, we could prefer small parameter values:

$$
p(\boldsymbol{w} \mid \mathcal{F})=N\left(\boldsymbol{w} ; 0, \tau^{2} l\right)
$$

Small $\tau^{2} \rightsquigarrow$ small values \boldsymbol{w} preferred prior to seeing the data.

- Posterior proportional to prior times likelihood:

$$
p(\boldsymbol{w} \mid \mathcal{D}, \cdot)=\frac{p(\boldsymbol{y} \mid \boldsymbol{w}, X) p(\boldsymbol{w} \mid \mathcal{F})}{p(\boldsymbol{y} \mid \mathcal{F}, X)} \propto L(\boldsymbol{w} ; \mathcal{D}) p(\boldsymbol{w} \mid \mathcal{F})
$$

- Normalization constant, a.k.a. marginal likelihood:

$$
p(\boldsymbol{y} \mid \mathcal{F}, X)=\int \underbrace{L(\boldsymbol{w} ; \mathcal{D})}_{p(\boldsymbol{y} \mid \boldsymbol{w}, X)} p(\boldsymbol{w} \mid \mathcal{F}) d \boldsymbol{w}=\int p(\boldsymbol{y}, \boldsymbol{w} \mid \mathcal{F}, X) d \boldsymbol{w},
$$

depends on model family \mathcal{F}, but not on parameter values of a specific model in the family.

Example: Bayesian regression

- Goal: choose among regression model families, specified by different feature mappings (basis functions) $\boldsymbol{x} \rightarrow \phi(\boldsymbol{x})$.
- Example: linear $\phi_{1}(\boldsymbol{x}) \in \mathbb{R}^{d_{1}}$ and quadratic $\phi_{2}(\boldsymbol{x}) \in \mathbb{R}^{d_{2}}$.
- For both families, we specify a Gaussian regression model:

$$
\mathcal{F}_{i}: p\left(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{w}_{i}, \sigma^{2}\right)=N\left(\boldsymbol{y} \mid \boldsymbol{w}_{i}^{t} \phi_{i}(\boldsymbol{x}), \sigma^{2}\right), \quad i \in\{1,2\} .
$$

- Considering the posterior predictive, there are two possibilities:
- \mathcal{F} too flexible: posterior requires many training examples before it focuses on useful parameter values;
- \mathcal{F} too simple: posterior concentrates quickly but the predictions remain poor. But how can we formalize this intuition?
- Posterior of model family: $p(\mathcal{F} \mid \boldsymbol{y}, X) \propto p(\boldsymbol{y} \mid \mathcal{F}, X) P(\mathcal{F})$.
- Pragmatic choice: Uniform prior over families \rightsquigarrow select the family whose marginal likelihood (a.k.a. Bayesian score) is larger.
- After seeing \mathcal{D}, select family \mathcal{F}_{1} if $p\left(\boldsymbol{y} \mid \mathcal{F}_{1}, X\right)>p\left(\boldsymbol{y} \mid \mathcal{F}_{2}, X\right)$.

Approximating the marginal likelihood

- Problem: In most cases we cannot compute the marginal likelihood in closed form \rightsquigarrow approximations are needed.
- A specific approximation will lead to the Bayesian Information Criterion (BIC).
- Key insight: when computing

$$
p(\boldsymbol{y} \mid \mathcal{F}, X)=\int L(\boldsymbol{w} ; \mathcal{D}) p(\boldsymbol{w} \mid \mathcal{F}) d \boldsymbol{w}
$$

the integrand is a product of two densities \rightsquigarrow integrand itself is an unnormalized density.

- Laplace's approximation uses a clever trick to approximate such integrals...

Approximation details: Laplace's Method

- Assume unnormalized density $p^{*}(\theta)$ has peak at $\hat{\theta}$. Goal: calculate normalizing constant

$$
Z_{p}=\int p^{*}(\theta) d \theta
$$

- Taylor-expand logarithm around $\hat{\theta}$:

$$
\ln p^{*}(\theta) \approx \ln p^{*}(\hat{\theta})-\frac{c}{2}(\theta-\hat{\theta})^{2}+\cdots
$$

where

$$
c:=-\left.\frac{\partial^{2}}{\partial \theta^{2}} \ln p^{*}(\theta)\right|_{\theta=\hat{\theta}} .
$$

(note that first order term vanishes)

$\ln p^{*}(\theta)$

Laplace's Method (cont'd)

- Approximate $p^{*}(\theta)$ by unnormalized Gaussian

$$
Q^{*}(\theta):=p^{*}(\hat{\theta}) \exp \left[-c / 2 \cdot(\theta-\hat{\theta})^{2}\right]
$$

- A normalized Gaussian would be:

$$
Q\left(\theta \mid \mu=\hat{\theta}, \sigma^{2}\right)=\frac{1}{Z_{Q}} \exp \left[-\frac{(\theta-\hat{\theta})^{2}}{2 \sigma^{2}}\right]
$$

with $Z_{Q}=\sqrt{2 \pi \sigma^{2}}$

$$
=\int \exp \left[-1 /\left(2 \sigma^{2}\right) \cdot(\theta-\hat{\theta})^{2}\right] d \theta
$$

- Approximate $Z_{p}=\int p^{*}(\theta) d \theta$ by

$$
\begin{aligned}
Z_{p} & \approx \int Q^{*}(\theta) d \theta \\
& =p^{*}(\hat{\theta}) \int \exp \left[-c / 2 \cdot(\theta-\hat{\theta})^{2}\right] d \theta \\
& =p^{*}(\hat{\theta}) \sqrt{2 \pi / c} \rightsquigarrow c \text { is the inverse variance }
\end{aligned}
$$

$$
\ln p^{*}(\theta) \& \ln Q^{*}(\theta)
$$

Laplace's Method (cont'd)

- Multivariate generalization in dimensions:
second derivative \rightsquigarrow Hessian matrix

$$
\begin{aligned}
H_{i j} & =\left.\frac{\partial^{2} \ln p^{*}(\boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right|_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} \\
Z_{p} & \approx p^{*}(\hat{\boldsymbol{\theta}}) \int \exp \left[-\frac{1}{2}(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})^{t} H(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})\right] d \boldsymbol{\theta} \\
& =p^{*}(\hat{\boldsymbol{\theta}}) \sqrt{\frac{(2 \pi)^{d}}{|H|}}=p^{*}(\hat{\boldsymbol{\theta}})\left|\frac{H}{2 \pi}\right|^{-\frac{1}{2}},
\end{aligned}
$$

where the last equation follows from the properties of the determinant: $|a M|=a^{d}|M|$ for $M \in \mathbb{R}^{d \times d}, a \in \mathbb{R}$.

- Interpretation:
$p(\boldsymbol{\theta})$ is approximated by a Gaussian centered at the mode $\hat{\boldsymbol{\theta}}$:

$$
p(\boldsymbol{\theta}) \approx \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\mu}=\hat{\boldsymbol{\theta}}, \Sigma=H^{-1}\right)
$$

Bayesian Information Criterion (BIC)

$$
\begin{aligned}
p(\mathcal{D} \mid \mathcal{F}) & =\int p(\mathcal{D} \mid \boldsymbol{w}) \cdot p(\boldsymbol{w} \mid \mathcal{F}) d \boldsymbol{w} \\
& \approx p\left(\mathcal{D} \mid \boldsymbol{w}^{*}\right) \cdot p\left(\boldsymbol{w}^{*} \mid \mathcal{F}\right)|H /(2 \pi)|^{-\frac{1}{2} \frac{\text { flat prior }}{\approx} p(\mathcal{D} \mid \hat{\boldsymbol{w}})|H /(2 \pi)|^{-\frac{1}{2}}} \\
\log p(\mathcal{D} \mid \mathcal{F}) & \approx \log p(\mathcal{D} \mid \hat{\boldsymbol{w}})-\frac{1}{2} \log |H|+C, \quad \text { with } \quad \hat{\boldsymbol{w}}=\boldsymbol{w}_{M L E} \text { in } \mathcal{F} .
\end{aligned}
$$

- Focus on last term:

$$
H=\sum_{i=1}^{n} H_{i}, \quad \text { with } \quad H_{i}=\nabla_{\boldsymbol{w}} \nabla_{\boldsymbol{w}} \log p\left(\mathcal{D}_{i} \mid \boldsymbol{w}\right)
$$

Let's approximate each H_{i} with a fixed matrix H^{\prime}

$$
\log |H|=\log \left|n H^{\prime}\right|=\log \left(n^{d}\left|H^{\prime}\right|\right)=d \log n+\log \left(\left|H^{\prime}\right|\right)
$$

- For model family selection, last term is irrelevant constant, because it is independent of \mathcal{F} and n :

$$
\log p(\mathcal{D} \mid \mathcal{F})+C^{\prime} \approx \log p(\mathcal{D} \mid \hat{\boldsymbol{w}})-\frac{d}{2} \log n=: \operatorname{BIC}(\mathcal{F}, n \mid \mathcal{D})
$$

Intuitive interpretation of BIC

- The Shannon information content of a specific outcome a of a random experiment is

$$
h(a)=-\log _{2} P(a)=\log \frac{1}{P(a)}
$$

It measures the "surprise" (in bits):
Outcomes that are less probable have larger values of surprise.

- Information theory: Can find a code so that the number of bits used to encode each symbol $a \in \mathcal{A}$ is essentially $-\log _{2} P(a)$.
- Here:

$$
-\operatorname{BIC}(\mathcal{F}, n \mid \mathcal{D})=\overbrace{\sum_{i=1}^{n}(\underbrace{-\log _{2} p\left(y_{i} \mid \boldsymbol{x}_{i}, \hat{\boldsymbol{w}}\right)}_{\text {surprise of } y_{i}})}^{\mathrm{DL} \text { of observations given model }}+\frac{d}{2} \log _{2}(n)
$$

- The sum of surprises of all observations is the description length of the observations given the (most probable) model in \mathcal{F}.

Intuitive interpretation of BIC

Second term: DL of the model. Intuitive explanation:

- The model, i.e. $\hat{\boldsymbol{w}} \in \mathbb{R}^{d}$, was estimated based on n samples.
- Can quantize every component into \sqrt{n} levels. Why?
- Recall the standard parametric rate:

$$
\sqrt{n}\left(\hat{\boldsymbol{w}}_{n}-\boldsymbol{w}\right) \sim N(\mathbf{0}, \sigma^{2}(\underbrace{}_{\substack{n \rightarrow \infty \\ X^{t} X / n}})^{-1})
$$

$\rightsquigarrow \hat{\boldsymbol{w}}_{n}$ converges to true \boldsymbol{w} at a rate of $1 / \sqrt{n}$
$\rightsquigarrow 1 / \sqrt{n}$ represents the magnitude of the estimation error
\rightsquigarrow no need for encoding with greater precision:

- Assume $w \in \mathbb{R}$, and range of w rescaled to unit interval $[0,1]$.
- Instead of communicating exact numerical value of \hat{w}_{n} over the communication channel, we can partition the unit interval into \sqrt{n} bins and communicate only the number of the bin.

Intuitive interpretation of BIC

- In \mathbb{R}^{d} : Grid of $(\sqrt{n})^{d}$ possible values for describing the model.
- We only need $\log _{2}\left((\sqrt{n})^{d}\right)=\log _{2} n^{(d / 2)}=(d / 2) \log _{2} n$ bits to encode $\hat{\boldsymbol{w}}$ with sufficient precision.
- In summary:

$$
\begin{aligned}
-\mathrm{BIC} & =-\log _{2} p(\mathcal{D} \mid \hat{\boldsymbol{w}}) \quad+\frac{d}{2} \log _{2} n \\
& =\mathrm{DL}(\text { data } \mid \text { model })+\mathrm{DL}(\text { model }) .
\end{aligned}
$$

- Maximizing BIC = minimizing the joint DL of data and model \rightsquigarrow Minimum Description Length principle.

Example: Bayesian logistic regression

Example: polynomial logistic regression, $n=100$.

$$
\phi_{1}(\boldsymbol{x})=\left(1, x_{1}, x_{2}\right)^{t}, \phi_{2}(\boldsymbol{x})=\left(1, x_{1}, x_{2},\left(x_{1}+x_{2}\right)^{2}\right)^{t} .
$$

$$
-\mathrm{BIC}=\sum_{i=1}^{n}\left(-\log _{2} p\left(y_{i} \mid \boldsymbol{x}_{i}, \hat{\boldsymbol{w}}\right)\right)+\frac{d}{2} \log _{2}(n)
$$

degree	$\#($ param $)$	DL(data \mid model $)$	DL(model $)$	BIC score
1	3	16.36 bits	9.97 bits	-26.33
2	4	15.77 bits	13.29 bits	-29.06

Example: Bayesian logistic regression

Example: polynomial logistic regression, $n=100$.

$$
\phi_{1}(\boldsymbol{x})=\left(1, x_{1}, x_{2}\right)^{t}, \phi_{2}(\boldsymbol{x})=\left(1, x_{1}, x_{2},\left(x_{1}+x_{2}\right)^{2}\right)^{t} .
$$

$$
-\mathrm{BIC}=\sum_{i=1}^{n}\left(-\log _{2} p\left(y_{i} \mid \boldsymbol{x}_{i}, \hat{\boldsymbol{w}}\right)\right)+\frac{d}{2} \log _{2}(n)
$$

degree	$\#($ param $)$	DL(data \mid model $)$	DL(model)	BIC score
1	3	58.56 bits	9.97 bits	-68.53
2	4	38.05 bits	13.29 bits	$\mathbf{- 5 1 . 3 4}$

Sparse Models

- Sometimes, we have many more dimensions d than training cases n.
- Corresponding design matrix X is "short and fat", rather than "tall and skinny".
- This is called small n, large d problem.
- For example, with gene microarrays, it is common to measure the expression levels of $d \approx 20,000$ genes, but to only get $n \approx 100$ samples (for instance, from 100 patients).
- Q: what is the smallest set of features that can accurately predict the response in order to prevent overfitting, to reduce the cost of building a diagnostic device, or to help with scientific insight into the problem?

Bayesian variable selection

- Let $\gamma_{j}=1$ if feature j is relevant, and let $\gamma_{j}=0$ otherwise.
- Our goal is to compute the posterior over models

$$
p(\gamma \mid \mathcal{D}) \propto p(\mathcal{D} \mid \gamma) p(\gamma)
$$

- Example: generate $n=20$ samples from a $d=10$ dimensional linear model, $y_{i} \sim N\left(w^{t} x_{i}, \sigma^{2}\right)$, in which $K=5$ elements of w are non-zero.
- Enumerate all $2^{10}=1024$ models. Note that a model is expressed as a specific sparsity pattern via a bit string, such as

$$
(0,1,1,0,0,1,0,1,1,0)
$$

Then, compute $p(\gamma \mid \mathcal{D})$ for each one.

- Interpreting the posterior over a large number of models is difficult \rightsquigarrow seek summary statistics.
- Natural choice: MAP estimate: $\hat{\gamma}=\arg \max _{\gamma} p(\gamma \mid \mathcal{D})$.

Bayesian variable selection

Fig 13.1 in K. Murphy: Machine Learning. MIT Press 2012. Posterior over all 1024 models. Vertical scale has been truncated at 0.1 for clarity.

Bayesian variable selection

- The above example illustrates the gold standard for variable selection: the problem was small $(d=10)$ \rightsquigarrow we were able to compute the full posterior exactly.
- Of course, variable selection is most useful in the cases where the number of dimensions is large.
- There are 2^{d} possible models (bit vectors)
\rightsquigarrow impossible to compute the full posterior in general.
- Even finding summaries is intractable \rightsquigarrow algorithmic speedups necessary.
- But first, focus on the computation of the posterior $p(\gamma \mid \mathcal{D})$.

The spike and slab model

- The posterior is given by

$$
p(\gamma \mid \mathcal{D}) \propto p(\gamma) p(\mathcal{D} \mid \gamma)
$$

- It is common to use the following prior:

$$
\begin{aligned}
p(\gamma) & =\prod_{j=1}^{d} \operatorname{Ber}\left(\gamma_{j} \mid \pi_{0}\right)=\pi_{0}^{\|\gamma\|_{0}}\left(1-\pi_{0}\right)^{d-\|\gamma\|_{0}} \\
\log p\left(\gamma \mid \pi_{0}\right) & =-\lambda\|\gamma\|_{0}+\text { const. }
\end{aligned}
$$

where π_{0} is the probability that a feature is relevant, and $\|\gamma\|_{0}=\sum_{j=1}^{d} \gamma_{j}$ is the ℓ_{0} pseudo-norm,
i.e., the number of non-zero elements.

- $\lambda=\log \frac{1-\pi_{0}}{\pi_{0}}$ controls the sparsity of the model.
- Setting $\sigma^{2}=1$, we can write the (marginal) likelihood as follows:

$$
p(\mathcal{D} \mid \gamma)=p(\boldsymbol{y} \mid X, \gamma)=\int p(\boldsymbol{y} \mid X, \boldsymbol{w}, \gamma) p(\boldsymbol{w} \mid \gamma) d \boldsymbol{w}
$$

The spike and slab model

- Focus on prior $p(\boldsymbol{w} \mid \gamma)$. If $\gamma_{j}=0$, feature j is irrelevant, so we expect $w_{j}=0$. If $\gamma_{j}=1$, we expect w_{j} to be non-zero.
- Assume a Gaussian prior, $N\left(0, \sigma_{w}^{2}\right)$, where σ_{w}^{2} reflects our expectation of the coefficients associated with the relevant variables:

$$
p\left(w_{j} \mid \gamma_{j}\right)= \begin{cases}\delta_{0}\left(w_{j}\right) & , \text { if } \gamma_{j}=0 \\ N\left(w_{j} \mid 0, \sigma_{w}^{2}\right) & , \text { else }\end{cases}
$$

- The first term is a spike at the origin.
- As $\sigma_{w}^{2} \rightarrow \infty$, the distribution $p\left(w_{j} \mid \gamma_{j}=1\right)$ approaches a uniform distribution \rightsquigarrow second term is slab of constant height.
- Spike and slab model (Mitchell and Beauchamp 1988).
- Full Bayesian treatment is computationally challenging!

Simplifying the model

- Assume $\sigma_{w}^{2} \rightarrow \infty\left(\rightsquigarrow\right.$ uniform prior $p\left(w_{j} \mid \gamma_{j}\right)$ over nonzero components) and approximate the likelihood using BIC:

$$
\begin{aligned}
\log p(\mathcal{D} \mid \gamma) & =\int p(\boldsymbol{y} \mid X, \boldsymbol{w}, \gamma) p(\boldsymbol{w} \mid \gamma) d \boldsymbol{w} \\
& \approx \log p\left(\boldsymbol{y} \mid X, \hat{\boldsymbol{w}}_{\gamma}\right)-\frac{1}{2} \underbrace{\left\|\hat{\boldsymbol{w}}_{\gamma}\right\|_{0}}_{\text {"effective" dimension }} \log n,
\end{aligned}
$$

where $\hat{\boldsymbol{w}}_{\gamma}$ is the ML estimate.

- Another view of this model: select $\hat{\boldsymbol{w}}$ by minimizing the negative log likelihood under a ℓ_{0} penalty:

$$
\operatorname{minimize}-\log p(\boldsymbol{y} \mid X, \boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{0}
$$

- Practical problem: ℓ_{0} pseudo-norm is highly non-convex!

Vector norms

The vector p-norms (ℓ_{p} norms) are defined by

$$
\begin{aligned}
\|\boldsymbol{x}\|_{p} & =\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p \leq \infty \\
\|\boldsymbol{x}\|_{\infty} & =\max \left(\left|x_{1}\right|, \cdots\left|x_{n}\right|\right)
\end{aligned}
$$

Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655

Simplifying the model further

- ℓ_{0} penalty \rightsquigarrow combinatorial optimization problem
- When we have many variables, it is computationally difficult to find the the minimizer of $-\log p(\boldsymbol{y} \mid X, \boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{0}$.
- Idea: replace discrete variables with continuous ones. Use continuous priors that "encourage" $w_{j}=0$ by putting a lot of probability density near the origin, such as a zero-mean Laplace distribution.

$$
p(\boldsymbol{w} \mid \lambda)=\prod_{j=1}^{d} \operatorname{Lap}\left(w_{j} \mid 0,1 / \lambda\right) \propto \prod_{j=1}^{d} \exp \left(-\lambda\left|w_{j}\right|\right)
$$

- Let us perform MAP estimation with this prior:

$$
f(\boldsymbol{w})=-\log p(\mathcal{D} \mid \boldsymbol{w})-\log p(\boldsymbol{w} \mid \lambda)=N L L(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{1} .
$$

where $\|\boldsymbol{w}\|_{1}=\sum_{j=1}^{d}\left|w_{j}\right|$ is the ℓ_{1} norm of \boldsymbol{w} and NNL means negative log-likelihood.

The Lasso

- Can be thought of as a convex approximation to the ℓ_{0} norm.
- For suitably large λ, the estimate $\hat{\boldsymbol{w}}$ will still be sparse.
- This model has the colorful name least absolute shrinkage and selection operator.

The Lasso

- Unfortunately, the $\|\boldsymbol{w}\|_{1}$ term is not differentiable at 0 \rightsquigarrow convex, but non-smooth optimization problem.
- The subderivative or subgradient of a (convex) function $f: \mathcal{I} \rightarrow \mathbb{R}$ at a point x_{0} is a scalar c such that

$$
f(x)-f\left(x_{0}\right) \geq c\left(x-x_{0}\right), \forall x \in \mathcal{I}
$$

where \mathcal{I} is some interval containing x_{0}. Note that c is a linear lower bound to f at x_{0}.

Fig. 13.4 in K. Murphy: Machine Learning. MIT Press 2012

The Lasso

- The set of all subderivatives is called the subdifferential
- For the absolute value function $f(x)=|x|$:

$$
\partial f(x)= \begin{cases}-1 & , \text { if } x<0 \\ {[-1,1]} & , \text { if } x=0 \\ +1 & , \text { if } x>0\end{cases}
$$

- For least-squares regression, it is easy to show that

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} R S S(\boldsymbol{w}) & =a_{j} w_{j}-c_{j} \\
a_{j} & =2 \sum_{i=1}^{n} x_{i j}^{2} \\
c_{j} & =2 \sum_{i=1}^{n} x_{i j}\left(y_{i}-\boldsymbol{w}_{-j}^{t} \boldsymbol{x}_{i,-j}\right)
\end{aligned}
$$

where \boldsymbol{w}_{-j} is \boldsymbol{w} without component j.

The Lasso

- c_{j} is (proportional to) the correlation between the j 'th feature $\boldsymbol{x}_{\cdot j}=\left(x_{1 j}, x_{2 j}, \ldots, x_{n j}\right)^{t}$ and the residual due to other features:

$$
c_{j} \propto \boldsymbol{x}_{\cdot j}^{t} \boldsymbol{r}_{(-j)} \text {, with } \boldsymbol{r}_{(-j)}=\boldsymbol{y}-\underbrace{X_{-j}}_{x w / \mathrm{j} \text {-th col }} \boldsymbol{w}_{-j} .
$$

- Recall that the residual from the least squares estimate is orthogonal to every input feature.
\rightsquigarrow magnitude of c_{j} indicates how relevant feature j is, relative to all other features.
- Adding the ℓ_{1} penalty term:

$$
\begin{aligned}
\partial_{w_{j}} f(\boldsymbol{w}) & =\left(a_{j} w_{j}-c_{j}\right)+\lambda \partial_{w_{j}}\|\boldsymbol{w}\|_{1} \\
& = \begin{cases}a_{j} w_{j}-c_{j}-\lambda & , \text { if } w_{j}<0 \\
{\left[-c_{j}-\lambda,-c_{j}+\lambda\right]} & , \text { if } w_{j}=0 \\
a_{j} w_{j}-c_{j}+\lambda & , \text { if } w_{j}>0\end{cases}
\end{aligned}
$$

The Lasso

- Depending on the value of c_{j}, the solution to $\partial_{w_{j}} f(\boldsymbol{w})=0$ can occur at three different values of w_{j} :

$$
\hat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & , \text { if } c_{j}<-\lambda \\ 0 & , \text { if } c_{j} \in[-\lambda, \lambda] \\ \left(c_{j}-\lambda\right) / a_{j} & , \text { if } c_{j}>\lambda\end{cases}
$$

- We can write this as follows:

$$
\hat{w}_{j}=\operatorname{soft}\left(\frac{c_{j}}{a_{j}} ; \frac{\lambda}{a_{j}}\right)
$$

where $\operatorname{soft}(a ; \delta)=\operatorname{sign}(a)(|a|-\delta)_{+}$
and $x_{+}=\max (x, 0)$ is the positive part of x.

- This is called soft thresholding.

The Lasso

Fig. 13.5 in K. Murphy: Machine Learning. MIT Press 2012.
Black line: Least squares fit $w_{k}=c_{k} / a_{k}$.
The red line (the regularized estimate) $\hat{w}_{k}\left(c_{k}\right)$, shifts the black line down (or up) by λ, except when $-\lambda \leq c_{k} \leq \lambda$, in which case it sets $w_{k}=0$.
By contrast, hard thresholding sets values of w_{k} to 0 if $-\lambda \leq c_{k} \leq \lambda$, but it does not shrink the values of w_{k} outside of this interval.

Lasso Algorithms: Coordinate-wise Descent

Sometimes it is hard to optimize all variables simultaneously, but it is easy to optimize them one by one. Assume that we can efficiently solve for the j-th coefficient w_{j} with all other coefficients held fixed:
$\hat{w}_{j}=\arg \min _{z} f\left(\boldsymbol{w}+\boldsymbol{z} \boldsymbol{e}_{j}\right)$, where \boldsymbol{e}_{j} is the j-th unit vector.
Then cycle through these component-wise updates.
For the Lasso, this is particularly simple:
for $j=1, \ldots, d$ do:

$$
\begin{aligned}
a_{j} & =2 \sum_{i=1}^{n} x_{i j}^{2} \\
c_{j} & =2 \sum_{i=1}^{n} x_{i j}\left(y_{i}-\boldsymbol{w}_{-j}^{t} \boldsymbol{x}_{i,-j}\right) \\
\hat{w}_{j} & =\operatorname{soft}\left(\frac{c_{j}}{a_{j}} ; \frac{\lambda}{a_{j}}\right) .
\end{aligned}
$$

