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Chapter 4: Regression

Least-squares fit (red) and two lines with slopes according to upper (lower)
95% confidence limit (green).
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Regression basics

In regression we assume that a response variable y € R is a noisy
function of the input variable x € RY.

y =f(x)+n.
We often assume that f is linear, f(x) = w'x, and that 1 has a
zero-mean Gaussian distribution with constant variance, n ~ N(0, 0?).

This is can equivalently be written as

p(yx) = N(u(x), %), with p(x) = w'x.
In one dimension: p(x) = wp + wix and x = (1, x).
wp is the intercept or bias term and wj is the slope.

If wi > 0, we expect the output to increase as the input increases.
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Least Squares and Maximum Likelihood

e Fit n data points (x;, y;) to a model that has d + 1 parameters
wj, j=0,...,d.

Notation: x <— (1,x) ~> wyp is the intercept.

Frequentist view: w is an unknown parameter vector, not a RV.

We assume that the n observations are iid.

Linear model: y; = wix; +n;, 1; ~ N(0,02).
Observed y; generated from a normal distribution centered at w'x;.

@ Model predicts linear relationship between conditional expectation
of observations y; and inputs x;:

Elyilxi] = wo + wixin + - - - + waxig = w'x; = f(x;; w).
Note: the expectation operator is linear and E[n;] = 0.
Regression function = conditional expectation.
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LS and Maximum Likelihood

o Likelihood function: conditional probability of all observed y; given
their explanation, treated as a function of the model parameters w:

1
L(w) Hexp [—M(%‘ - WtXi)2

o Maximizing L = finding model that best explains observations:

w = arg max L(w) = arg mMi/n[—L(w)] = arg mMi/n[— log(L(w))]
= argmin Z(YI — w'x;)?

Least-squares fit = ML estimate under Gaussian error model.

@ Wy g minimizes the residual sum of squares

RSS(w) =) 2 =) i~ flxisw)* = |ly — Xw]|.
i=1 i=1
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LS and Maximum Likelihood

o Finding the optimal weights:

R
ORSSW) _ 0 (st wixtxw] L0
ow ow
@ Using the following results from matrix calculus,
0
(;ixxth = 2Mx, if M is symmetric,

we finally arrrive at
w = (XTX)"1Xty.
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Least squares regression: Geometry
The residual is r = y — Xw. Gradient at w = w vanishes.

w = (X'X)"1X'y = Xty — XWw) = X'r=0.

If follows that >>7_; Xjir; =0, Vj=0,1,...,d.

~> Residual is orthogonal to every input dimension X,;.

Y

X[ 1]

- X2

Adapted from Fig. 3.2 in (Hastie, Tibshirani, Friedman: The Elements of Statistical Learning Theory. Springer)
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Frequentist confidence limits

e Recall: y; = f(x;; w) + n;, with independent Gaussian noise.
o In matrix-vector form: y = Xw + n, with n ~ N(0,02/,).
w = (XIX)"1Xxty
= (X'X) Xt Xw + (XEX) 71Xy
=w+ (X'X)"1X'n
= w-w=(XX)"1Xin= An
o Linear functions of normals are normal:
N(0,0%1,) = An ~ N(0,02AAY).
Here: A= (XIX)"1Xt = AA! = (XtX)"!
e Conditioned on X and o2
W — w|X, 0% ~ N (0,0%(X"X) 7).
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Frequentist confidence limits

@ Distribution completely specified ~~ confidence limits:
For k-th component: Wy — wy ~ N(0, 025k,
where SKk denotes the k-th diagonal element of (XX)~!
@ Thus, z is standard normal
Zy = (Wk - Wk)/\/ O'2Skk ~ N(O, 1)
o CDF:

P(zi < ko) = e PlPdt = d(k)=1—c

N

o Upper limit for wy:
P(zxk < ke) = P

(Vo2Skkz, < Vo2Skkk,)

(Wi — (Wi — Wi) > wy — Vo2Skkk,)
(v

(

I
B}

= P Wy > Wy — VUzskka)
= PWk<Wk—|-V25kk)*].—C
@ Same argument for z; = —z; ~~ lower limit.
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Frequentist confidence limits

Least-squares fit (red) and two lines with slopes according to upper (lower)
95% confidence limit (green).
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Standard parametric rate

@ Assume we have estimated the parameters based on n samples:
(Wp—w) ~ N(0,02(X'X)H)
= N(0,0% (X'X/n)""-1/n)
(W, —w) ~ N(0,02(X'X/n)" )
——

n—o0

- X

@ Since for n — oo, X*X/n — ¥ = const., this means that
W, converges to w at a rate of 1/,/n.

@ This is a very general result that holds in an asymptotic sense even
without assuming normality, due to the central limit theorem.

@ Due to its universality, it is called the standard parametric rate.

o Equivalent statement:
1/4/n represents the magnitude of the estimation error.
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Basis functions

@ Can be generalized to model non-linear relationships by replacing x

with some non-linear function of the inputs, ¢(x):
ply|x) = N(w'e(x), o2).

@ Predictions can be based on a linear combination of a set of basis
functions ¢(x) = {go(x), g1(x), ..., gm(x)}, with gi(x) : R? — R.
Can model the intercept by setting go(x) = 1:

f(x;w) =wo + wigi(x) + - + Wmgm(x).
~» additive models

degree 1

degree 2

Fig 1.7 in K. Murphy: Machine Learning. MIT Press 2012
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Additive models

o Examples:
If x € RY and m=d+1, go(x) =1 and gi(x) = x;,i = 1,...,d, then
f(x;w) =wp+ wixy + -+ + wgxy.
If x €R, go(x) =1 and gi(x) = x',i=1,...,m, then
f(x;w)=wy+ wixt 4w ™.
@ Basis functions can capture various properties of the inputs.
Example: Document analysis

x = text document (collection of words)
1, if word i appears in the document
gi(x) = :
0, otherwise

fxiw) = wo+ Y wig(x).

i€words
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Additive models cont’d

@ We can also make predictions by gauging the
similarity of examples to prototypes.

@ For example, our additive regression function could be
f(x; w) = wo + wig1(x) + - + Wingm(x),

where the basis functions are radial basis functions

gk(x) = exp(— 5 x = x[*)

measuring the S|m||ar|ty to the prototypes xy.
@ The variance o controls how quickly the basis function vanishes as a
function of the distance to the prototype.

o Training examples themselves could serve as prototypes.
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Additive models cont’d

Can view additive models graphically in terms of units and weights.

In Multi Layer Perceptrons the basis functions have adjustable
parameters.
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Example: Polynomial regression
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Complexity and overfitting

With limited training examples our polynomial regression model may
achieve zero training error but nevertheless has a large expected error.

training — Z f(xi; w )2 ~0
expectation E(X7y)Np (v — f(x; W) >0

We suffer from over-fitting
~~ should reconsider our model ~~ model selection.

We will discuss model selection from a Bayesian perspective first.
A frequentist approach will follow later in the chapter on
statistical learning theory.
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Bayesian interpretation: priors

@ Suppose our generative model takes an input x € RY and maps it to
a real valued output y according to

p(ylx, w,0%) = N(y|w'x, 0°)
o We will keep o2 fixed and only try to estimate w.

e Given data D = {(x1,¥1),-..,(xn, yn)}, the likelihood function is

n n
1 1
L(w;D) = N(yi|wtx;, o) = —e (— — wix; 2).
( ) ,:1_[1 (vil ioo) ,:1_{ 7 Xp 20_2()// i)
@ Predictions in classical regression based on maximizing parameters w.

o In Bayesian analysis we keep all regression functions,
just weighted by their posterior probability:

plyIx.D.0%) = [ plylx, w,o?) p(w|D. %) dw
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Bayesian regression: Prior and posterior

o We specify our prior belief about the parameter values as p(w).
For instance, we could prefer small parameter values:

p(w) =N (w|0,7'2/>
The smaller 72 is, the smaller values of w we prefer
prior to seeing the data.
o Posterior proportional to prior p(w) times likelihood:
p(w|D, ) x L(w; D)p(w)
o Here: posterior is Gaussian p(w|D, 02) = N(w|w,, V,) with
conditional mean w,, and conditional covariance V), (i.e. conditioned
on dataset of size n) given by

w, = (XX +M)"Xty, V, =X X+ AL

. 2
with A = %
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Bayesian regression: Posterior computation

Given variables w € R? and y € R", assume linear Gaussian system:

p(w) = N(wlpz,,, .,) (~ prior)
p(ylw) = N(y|Aw + b,%,) (~ likelihood)

@ The posterior is also Gaussian with conditional mean |y and
conditional covariance ¥,
p(wly) = N(w|py)y Zw)y)
T, =T TAEIA
Hwly = Twly (Atz;l(y —b)+ ZV_VluW> :
Gaussian likelihood and Gaussian prior form a conjugate pair.
@ The normalization constant (denominator in Bayes formula) is

py) = N(y|Ap,, + b, T, + AX, A").
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Bayesian regression: Posterior predictive

@ Prediction of y for new x: use posterior as weights for predictions
based on individual w's ~~ Posterior predictive:

pyIx.D.0%) = [ plylx,w,o?)p(w|D. o) dw
— [ NOIxtw. o) N(wlw, Vy) dw

— N(y|wx, 02(x)), with
o2(x) = o2 + xtV,x.

@ The variance in this prediction, o2(x), depends on two terms:

» the variance of the observation noise, o2

> the variance in the parameters, V,
~> depends on how close x is to training data D
~ error bars get larger as we move away from training points.
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Bayesian regression: Posterior predictive

@ By contrast, the plugin approximation uses only the ML-parameter
estimate with the degenerate distribution p(w|D, 0?) = §; (w):
ply|x,D,0?) ~ [ plylx, w,0?)ou(w) dw = p(y|x, W,0?) = N(y|x"W,0?).

o plugin approximation (MLE) Posterior predictive (known variance)
T . 80r
—_— prgd}cﬂon = prediction
Q training data 7 training data
50
60
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3of
301
200 200
10
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o . . . . , . , L . . . . , . , ,
-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8

Fig. 7.12 in K. Murphy: Machine Learning. MIT Press 2012. Example with quadratic basis functions: posterior predictive
distribution (mean and +10).
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Sampling from posterior predictive

Left: plugin approximation: f(y) = ¢(x)'w,
where ¢(x) is the expanded input vector (1, x, x2)*.

Right: sampled functions ¢(x)tw(s), where W(S) are samples from the
posterior
functions sampled from plugin approximation to posterior

functions sampled from posterior
50 100

-8 -6 -4 -2 a4 6 -8 -6 -4 -2 o 2 4 6

Flg 7 12 in K. Murphy: Machme Learning. MIT Press 2012
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MAP approximation and ridge regression

o Posterior proportional to prior p(w) = N (w|0, 72/) times likelihood.
o The MAP estimate is
wwmap = arg max{log[L(w; D)] + log[p(w)]}
— arg min{— log{L(w; D)] — loglp(w)]}

o1 1
= arg mln{ﬁ > (yi— whx;)? + ?wtw}
i

2
—argmm{z i — wix;) Jr%wtw}

T
—argmm{z i — wix)2 4+ Awiw}

@ In classical statistics, th|s is called ridge regression:
-1
WMAP = Wiidge = (XtX + )\I) Xt_y
@ In regularization theory, this is an example of
Tikhonov Regularization.
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Bayesian regression (again)

@ Suppose our model within the model family F takes an input
x € R? and maps it to a real valued output y according to

p(ylx, w,0%) = N(y; w'x, 0?)
o We will keep o2 fixed and only try to estimate w.
o Given data D = {(x1,¥1),---,(Xn, yn)}, define likelihood

n n 1 1
‘Y — cwty. A2y — TT 2 I PR R

L(w;D) = izl_[lN(y,, w'x;,0%) = ’:1_[1 Zexp( 20’2()/, wx;) ) .

@ Predictions in classical regression based on maximizing parameters w.

o In Bayesian analysis we keep all regression functions,
just weighted by their posterior probability:

pyIx.D.0%) = [ plyIx, w,0?) p(w|D, %) dw
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Bayesian regression (again)

o We specify our prior belief about the parameter values as p(w|F).
For instance, we could prefer small parameter values:

p(w|F) = N(w;0,72)
Small 72 ~» small values w preferred prior to seeing the data.

@ Posterior proportional to prior times likelihood:

p(w|D,") = p(yL“(’;lT;){’)((“)”f) x L(w;D)p(w|F)

@ Normalization constant, a.k.a. marginal likelihood:
p(y|F, X) :/L(W;D)p(w]}")dw:/p(y7 w|F, X)dw,
———
plylw,X)

depends on model family 7, but not on parameter values of a
specific model in the family.
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Example: Bayesian regression

@ Goal: choose among regression model families, specified by
different feature mappings (basis functions) x — ¢(x).
Example: linear ¢1(x) € R% and quadratic ¢o(x) € R%.
For both families, we specify a Gaussian regression model:

Fiot plylxwi,0?) = N(ylwioi(x),0?), i€ {1,2}.
Considering the posterior predictive, there are two possibilities:

» F too flexible: posterior requires many training examples before it
focuses on useful parameter values;

» F too simple: posterior concentrates quickly but the predictions
remain poor. But how can we formalize this intuition?

Posterior of model family: p(Fly, X) o p(y|F, X) P(F).

Pragmatic choice: Uniform prior over families ~~ select the family
whose marginal likelihood (a.k.a. Bayesian score) is larger.

After seeing D, select family F1 if p(y|F1, X) > p(y|F2, X).
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Approximating the marginal likelihood

@ Problem: In most cases we cannot compute the marginal likelihood in
closed form ~~ approximations are needed.

@ A specific approximation will lead to the
Bayesian Information Criterion (BIC).

o Key insight: when computing

pyIF.X) = [ L{wi D)p(w|F)dw.

the integrand is a product of two densities ~» integrand itself is an
unnormalized density.

o Laplace’s approximation uses a clever trick to approximate such
integrals...
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Approximation details: Laplace’'s Method

@ Assume unnormalized density p*(€) has peak
at 0. Goal: calculate normalizing constant

4:/&@&

@ Taylor-expand logarithm around i P(0)
mpwe)z|ny(m._gw._m2+.”7
where ,
c:= —% Inp*(0)],_s-
(note that first order term vanishes)
In p*(6)
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Laplace's Method (cont'd)

@ Approximate p*(#) by unnormalized Gaussian

S

Q*(0) := p*(0) exp {_5/2 (6 - 9“)2]

@ A normalized Gaussian would be:
A 1
Q| pn="0,0%)=—exp [—

=7
with Zg = V27102
= Jexp [-1/(20%) - (0 - 0)%| db
e Approximate Z, = [ p*(6) d by
Z, ~ / Q*(0) do

_ p*(é)/exp [~c/2- (0 0y do

(60— é)?]

202

In p*(0) & In Q*(@)

SO L)

= p*(A)y/27/c ~> c is the inverse variance
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Laplace's Method (cont'd)

o Multivariate generalization in d dimensions:
second derivative ~~ Hessian matrix
. — 0% In p*(0)
v 00;00;

=6
;ﬁzwwxfapkiw—éwa—éﬂdo
A 7'rd a _%
() =@

where the last equation follows from the properties of the
determinant: |aM| = a?|M| for M € R9*9, a2 € R.

@ Interpretation:

p(0) is approximated by a Gaussian centered at the mode 0:

p(0) ~ N(O|lp =0,x = H1).
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Bayesian Information Criterion (BIC)

p(D|F) / p(Dlw) - p(w|F)dw

1 flat prior

P(DIw®) - p(w*|F)|H/(2m)| "2 "= p(D]i)|H/(2m)| 2

Q

1
log p(D|F) =~ Iogp(D|ﬁ/)—§log|H|+C, with W = wpyg in F.

o Focus on last term:
n .
H=)_ H, with H;=V,Vylogp(Djw).
Let's approximate each H; with a fixed matrix H’
log |H| = log |nH'| = log(n?|H'|) = d log n + log(|H'|).

@ For model family selection, last term is irrelevant constant,
because it is independent of F and n:

log p(D|F) + C' ~ log p(D|W) — 4 log n =: BIC(F,n|D).
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Intuitive interpretation of BIC

@ The Shannon information content of a specific outcome a of a
random experiment is

h(a) = — log, P(a) = log P(la)'
It measures the “surprise” (in bits):
Outcomes that are less probable have larger values of surprise.
o Information theory: Can find a code so that the number of bits
used to encode each symbol a € A is essentially — log, P(a).

o Here:
DL of observations given model

n

. d
—BIC(F, n|D) = > | —logy plyilxi, w) | + > log,(n)
i—1

surprise of y;
@ The sum of surprises of all observations is the description length of
the observations given the (most probable) model in F.
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Intuitive interpretation of BIC

Second term: DL of the model. Intuitive explanation:
o The model, i.e. w € RY, was estimated based on n samples.
e Can quantize every component into \/n levels. Why?

@ Recall the standard parametric rate:

Vi(in — w) ~ N(0,0(X X /n) )

n—oo

— X

~> W, converges to true w at a rate of 1/y/n
~» 1/4/n represents the magnitude of the estimation error

~> no need for encoding with greater precision:
» Assume w € R, and range of w rescaled to unit interval [0, 1].
> Instead of communicating exact numerical value of W, over the
communication channel, we can partition the unit interval into
\/n bins and communicate only the number of the bin.
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Intuitive interpretation of BIC

o In RY: Grid of (/n)? possible values for describing the model.

o We only need log,((1/n)9) = log, n(9/2) = (d/2) log, n bits to
encode w with sufficient precision.

@ In summary:
d
—BIC= —log, p(D|w) + > log, n
= DL(datajmodel) + DL(model).

@ Maximizing BIC = minimizing the joint DL of data and model
~» Minimum Description Length principle.
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.
¢1(x) = (17X1aX2)tv ¢2(X) = (17X17X2a (Xl +X2)2)t_

n . d
—BIC = Z (—logo p(yi|xi, w)) + 5 log,(n)
i=1

+
+

+ ot
+ t+ Ty

+
+

DL(data|model) | DL(model) | BIC score

degree ‘ #(param) ‘
1 3 16.36 bits 9.97 bits -26.33
2 4 15.77 bits 13.29 bits | -29.06

43/60
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Example: Bayesian logistic regression
Example: polynomial logistic regression, n = 100.

B1(x) = (1, x1,x2)", Pa(x) = (1, x1, %2, (x1 + X2)?)".

n . d
—BIC = Z (—logo p(yi|xi, w)) + 5 log,(n)
i=1

degree ‘ #(param) ‘ DL(data|model) ‘ DL(model) ‘ BIC score
1 3 58.56 bits 9.97 bits -68.53
2 4 38.05 bits -51.34

13.29 bits
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Sparse Models

@ Sometimes, we have many more dimensions d than training cases n.
o Corresponding design matrix X is “short and fat”, rather than
“tall and skinny".
o This is called small n , large d problem.
o For example, with gene microarrays, it is common to measure the

expression levels of d =z 20,000 genes, but to only get n ~ 100
samples (for instance, from 100 patients).

@ Q: what is the smallest set of features that can accurately predict
the response in order to prevent overfitting, to reduce the cost of

building a diagnostic device, or to help with scientific insight into
the problem?
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Bayesian variable selection

o Let v; = 1 if feature j is relevant, and let 7; = 0 otherwise.
@ Our goal is to compute the posterior over models

p(¥|D) o< p(D]Y)p(7)

o Example: generate n = 20 samples from a d = 10 dimensional linear
model, y; ~ N(wix;, 02), in which K = 5 elements of w are non-zero.

o Enumerate all 2% = 1024 models. Note that a model is expressed as
a specific sparsity pattern via a bit string, such as

(0,1,1,0,0,1,0,1,1,0).
Then, compute p(+|D) for each one.

@ Interpreting the posterior over a large number of models is difficult
~ seek summary statistics.

o Natural choice: MAP estimate: 4 = arg max., p(v|D).
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Bayesian variable selection

p(model|data)
0.1 T T
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0 200 400 600 800 1000

Fig 13.1 in K. Murphy: Machine Learning. MIT Press 2012. Posterior over all
1024 models. Vertical scale has been truncated at 0.1 for clarity.
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Bayesian variable selection

@ The above example illustrates the gold standard for variable
selection: the problem was small (d = 10)
~ we were able to compute the full posterior exactly.

@ Of course, variable selection is most useful in the cases where the
number of dimensions is large.

o There are 29 possible models (bit vectors)
~ impossible to compute the full posterior in general.

o Even finding summaries is intractable
~> algorithmic speedups necessary.

e But first, focus on the computation of the posterior p(+|D).
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The spike and slab model

@ The posterior is given by

p(v|D) o< p(v)p(D|)
@ It is common to use the following prior:

d
p(v) = [[Ber(vjlmo) = my (1 — mo)d= I,
j=1
log p(v|m0) = —Allv[lo + const.,

where 7 is the probability that a feature is relevant,
and ||v|lo = Z}j:l ~j is the ¢y pseudo-norm,
i.e., the number of non-zero elements.

o A=log 1;—:0 controls the sparsity of the model.

@ Setting 02 = 1, we can write the (marginal) likelihood as follows:

P(DI) = plyIX,7) = [ p(yIX. w.7)p(wly) dw
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The spike and slab model

e Focus on prior p(w|vy). If v; = 0, feature j is irrelevant, so we expect
wj = 0. If 75 = 1, we expect w; to be non-zero.

o Assume a Gaussian prior, N(0,02), where o2, reflects our
expectation of the coefficients associated with the relevant variables:

(50(W') , if v =0
p(wjlv) = o ’
N(w;j|0,07,)  else
o The first term is a spike at the origin.

o As 02, — oo, the distribution p(w;|y; = 1) approaches a uniform
distribution ~~ second term is slab of constant height.

o Spike and slab model (Mitchell and Beauchamp 1988).

o Full Bayesian treatment is computationally challenging!
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Simplifying the model

o Assume 02, — 0o (~ uniform prior p(w;|7;) over nonzero
components) and approximate the likelihood using BIC:

g p(P7) = [ plyIX, w.)p(wiy) dw

R 1 .
~logp(y|X, i) =5 Wy llo logn,

"effective” dimension
where W, is the ML estimate.

@ Another view of this model: select w by minimizing the negative log
likelihood under a £y penalty:

minimize — log p(y|X, w) + Al|w||o.

@ Practical problem: ¢y pseudo-norm is highly non-convex!
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Vector norms
The vector p-norms (¢, norms) are defined by
n 1/p
Ixllp =D x| , 1<p<oo,
i=1

[1X[loo = max(|xal, -- - [xa])-

05 (-

-05 |-

Quartl, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17428655
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Simplifying the model further

@ /y penalty ~ combinatorial optimization problem

o When we have many variables, it is computationally difficult to find
the the minimizer of — log p(y|X, w) + A||w/|o.

o ldea: replace discrete variables with continuous ones. Use continuous
priors that “encourage” w; = 0 by putting a lot of probability density
near the origin, such as a zero-mean Laplace distribution.

d d
p(wl) = T Lap(w;|0,1/) x T] exp(=Alw)
j=1 j=1
o Let us perform MAP estimation with this prior:
f(w) = — log p(D|w) — log p(w]A) = NLL(w) + Al|wl|y.
where ||w|; = Zj’le |wj| is the ¢1 norm of w and NNL means
negative log-likelihood.
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The Lasso

@ Can be thought of as a convex approximation to the /3 norm.

o For suitably large A, the estimate w will still be sparse.

@ This model has the colorful name least absolute shrinkage and

selection operator.

Volker Roth (University of Basel)
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The Lasso

e Unfortunately, the ||w/||; term is not differentiable at 0
~~ convex, but non-smooth optimization problem.
e The subderivative or subgradient of a (convex) function
f:Z — R at a point xp is a scalar ¢ such that
f(x)—f(x0) > c(x —x0), Vx €T
where 7 is some interval containing xg.
Note that c is a linear lower bound to 7 at xp.

Fig. 13.4 in K. Murphy: Machine Learning. MIT Press 2012
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The Lasso

@ The set of all subderivatives is called the subdifferential
o For the absolute value function f(x) = |x|:
-1 ,ifx <0
0f(x) =4[-1,1] ,ifx=0
+1 Jif x>0

@ For least-squares regression, it is easy to show that

O Rss(w) = aw—g

Iw;
n
_ 2
3 = 2) x;
i=1

n
G = 2 xjlyi—w'x; ;).
i=1

where w_; is w without component ;.
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The Lasso

@ ¢j is (proportional to) the correlation between the j'th feature

x.j = (x1j, X2}, ..., Xpj)" and the residual due to other features:
t H — . .
Cj X Xr(—j) with rp=y-— X_j w_;.
~—~
X w/o j-th col

@ Recall that the residual from the least squares estimate is
orthogonal to every input feature.
~» magnitude of ¢; indicates how relevant feature j is,

relative to all other features.

o Adding the /1 penalty term:

8ij(w) = (ajo_Cj)‘i')‘avaWHl
ajw; — ¢ — A cifw; <0
= ql-g—XA—¢+A] ,ifw;=0
ajw; — ¢ + A cif wp >0
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The Lasso

o Depending on the value of ¢;, the solution to d,,f(w) = 0 can occur
at three different values of w;:

(c+AN)/a ,ifg<—A
wj =<0 Jif g e [N ]
(cj—)\)/aj ,iij>)\
@ We can write this as follows:

G A
W; = soft (J; ) :
aj dj

where soft(a; ) = sign(a)(|a] — 0)+
and x; = max(x,0) is the positive part of x.

@ This is called soft thresholding.
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The Lasso

/ C
/ b k

Fig. 13.5 in K. Murphy: Machine Learning. MIT Press 2012.

Black line: Least squares fit wy = ci/ak.

The red line (the regularized estimate) Wy (ck), shifts the black line down (or up)

by A, except when —X < ¢, < A, in which case it sets wy = 0.

By contrast, hard thresholding sets values of wy to 0 if =\ < ¢, < A,
but it does not shrink the values of w, outside of this interval.
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Lasso Algorithms: Coordinate-wise Descent

Sometimes it is hard to optimize all variables simultaneously, but it is easy
to optimize them one by one. Assume that we can efficiently solve for
the j-th coefficient w; with all other coefficients held fixed:

W; = argmin, f(w + ze;), where e; is the j-th unit vector.

Then cycle through these component-wise updates.

For the Lasso, this is particularly simple:

for j=1,...,d do:

n
L 2
94 = ZZXU

C:I' = 2ZXU —_jx’ *J)
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