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Chapter 6: Elements of Statistical Learning Theory
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A ’black box’ model of learning

G S

LM

y

x

y

G Generates i.i.d. samples x according to unknown pdf p∗(x).
S Outputs values y according to unknown p∗(y |x).

LM is trained on a set of observed pairs, drawn from a
true but unknown “state of the nature” , formalized by
the joint probabilty p∗(x, y):
D = {(x1, y1), . . . , (xn, yn)} i.i.d.∼ p∗(x, y).
LM tries to capture the relation between x and y .
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Frequentist Decision Theory

We assume that x can be observed for every object, but the true class
label is unknown ⇝ y is unobservable state of nature.
We consider an estimator δ(D), defined as a prediction function
ŷ = fD(x). Since the dataset is random, δ is a RV which has a
Frequentist interpetation ⇝ distribution of δ defined over random
datasets ⇝ sample distribution of estimator.
Conceptually, we can compare the estimatated class membership with
the “true” label via a loss function L(y , f (x)).
Define the expected risk as the average loss wrt the true joint
distribution:

R(f , p∗) = Ep∗(y ,x)L(y , f (x)) = Ep∗(x)Ep∗(y |x)L(y , f (x)).
We will usually denote this by R(f ), but keep in mind that it actually
depends on the unknown state of nature p∗!
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Empirical risk

Problem: We usually dont’t know the true state of nature p∗

Frequentist solution: approximate it with the empirical distribution for
the n observed samples in D:

pD(x, y |D) = 1
n

∑
(x i ,yi )∈D

δ(x − x i)δ(y , yi),

This defines the empirical risk as the sample average of the loss:

Remp(f |D) = 1
n

n∑
i=1

L(yi , f (x i)).

We usually just write this as Remp(f ), but please note that it depends
on a specific sample.
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Hypothesis space

The best possible risk is defined as inff R[f ].
...but we just have a sample D. To find “good” functions we typically
have to restrict ourselves to a hypothesis space H containing
functions with some property (such as smoothness, etc.)
In a hypothesis space H, denote by f ∗ the best possible function
that can be implemented by the learning machine:

f ∗ = arg min
f ∈H

R(f ).

Denote by fD ∈ H the empirical risk minimizer on a sample D:
fD = arg min

f ∈H
Remp(f |D).

Assuming a sample of size n, we usually write this as fn, but keep in
mind that it is defined for a specific sample D.
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Generalization

SLT gives results for bounding the error on the unseen data, given
only the training data.
There needs to be a relation that couples past and future.

Sampling Assumption
The only assumption of SLT is that all samples (past and future) are iid.

Typical structure of a bound: With probability 1 − δ it holds that

R[fn] ≤
known︷ ︸︸ ︷

Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)
︸ ︷︷ ︸

confidence term

,

with some constants a, b > 0.
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Convergence of random variables

Definition (Convergence in Probability)
Let X1, X2, . . . be random variables. We say that Xn converges in
probability to the random variable X as n → ∞, iff, for all ε > 0,

P(|Xn − X | > ε) → 0, as n → ∞.

We write Xn
p−→ X as n → ∞.
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The simplest case: Binary classification

Binary classification with 0/1 loss
Our analysis considers the case where

f : X → {−1, 1}, and L(y , f (x)) = 1
2 |1 − f (x)y |.

Note: We can use any hypothesis space and apply the signum
function:

H′ = {f ′ = sign(f )|f ∈ H}
Similar results from SLT also available other classification loss
functions and for regression (but we will not discuss this here).

Volker Roth (University of Basel) Machine Learning 9 / 41



Consistency of ERM

The principle of empirical risk minimization is consistent if for any ϵ > 0,

lim
n→∞

P(|R[fn] − R[f ∗]| > ϵ) = 0

and

lim
n→∞

P(|Remp[fn] − R[fn]| > ϵ) = 0
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A counter example

Why is bounding P(|Remp[fn] − R[f ∗]| > ϵ) not sufficient?

f

f
n

*
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Hoeffding’s inequality

Theorem (Hoeffding)
Let ξi , i ∈ [0, n] be n independent instances of a bounded random variable
ξ, with values in [a, b]. Denote their average by Qn = 1

n
∑

i ξi . Then for
any ϵ > 0,

P(Qn − E (ξ) ≥ ϵ)
P(E (ξ) − Qn ≥ ϵ)

}
≤ exp(− 2nϵ2

(b − a)2 ) (1)

and

P(|Qn − E (ξ)| ≥ ϵ) ≤ 2 exp(− 2nϵ2

(b − a)2 ) (2)
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Hoeffding’s inequality
Let ξ be the 0/1 loss function:

ξ = 1
2 |1 − f (x)y | = L(y , f (x)).

Then

Qn[f ] = 1
n

n∑
i=1

ξi = 1
n

n∑
i=1

L(yi , f (x i)) = Remp[f ]

and

E [ξ] = E [L(y , f (x))] = R[f ].

I.i.d. sampling assumption: ξi are independent instances of bounded
random variable ξ, with values in [0, 1].

Hoeffding’s Inequality for fixed functions
P(|Remp[f ] − R[f ]| > ϵ) ≤ 2 exp(−2nϵ2)
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Hoeffding’s inequality
Hoeffding’s inequality gives us rates of convergence for any fixed function.

Example: Let f ∈ H be an arbitrary fixed function
For ϵ = 0.1 and n = 100,

P(|Remp[f ] − R[f ]| > 0.1) ≤ 0.28
For ϵ = 0.1 and n = 200,

P(|Remp[f ] − R[f ]| > 0.1) ≤ 0.04

Caution!
Hoeffding’s inequality does not tell us that

P(|Remp[fn] − R[fn]| > ϵ) ≤ 2 exp(−2nϵ2).

Because:
fn is chosen to minimize Remp.
This is not a fixed function!!
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Consistency

Risk

R

For each fixed function f , Remp[f ] P−−−→
n→∞

R[f ] (downward arrow).
This does not mean that the empirical risk minimizer fn will lead to a
value of risk that is as good as possible, R[f ∗] (consistency).
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Conditions for consistency

Let

fn := arg min
f ∈H

Remp[f ]

f ∗ := arg min
f ∈H

R[f ]

then

R[f ] − R[f ∗] ≥ 0, ∀f ∈ H
Remp[f ] − Remp[fn] ≥ 0, ∀f ∈ H
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Conditions for consistency

0 ≤
≥0︷ ︸︸ ︷

R[fn] − R[f ∗] +
≥0︷ ︸︸ ︷

Remp[f ∗] − Remp[fn]
= R[fn] − Remp[fn] + Remp[f ∗] − R[f ∗]
≤ sup

f ∈H
(R[f ] − Remp[f ])︸ ︷︷ ︸

Assumption:
P−−−→

n→∞
0

+ Remp[f ∗] − R[f ∗]︸ ︷︷ ︸
Hoeffding:

P−−−→
n→∞

0

Assume

sup
f ∈H

(R[f ] − Remp[f ]) P−−−→
n→∞

0

One-sided uniform convergence over all functions in H
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Conditions for consistency

0 ≤
≥0︷ ︸︸ ︷

R[fn] − R[f ∗] +
≥0︷ ︸︸ ︷

Remp[f ∗] − Remp[fn] P−−−→
n→∞

0

− R[f ∗] + Remp[f ∗] P−−−→
n→∞

0

R[fn] − Remp[fn] P−−−→
n→∞

0

supf ∈H(R[f ] − Remp[f ]) P−−−→
n→∞

0 ⇒ consistency of ERM.
Thus, it is a sufficient condition for consistency.
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The key theorem of learning theory

Theorem (Vapnik & Chervonenkis ’98)
Let H be a set of functions with bounded loss for the distribution F (x , y),

A ≤ R[f ] ≤ B, ∀f ∈ H.

For the ERM principle to be consistent, it is necessary and sufficient that

lim
n→∞

P(sup
f ∈H

(R[f ] − Remp[f ]) > ϵ) = 0, ∀ϵ > 0.

Note: here, we looked only at the sufficient condition for consistency.
For the necessary condition see (Vapnik & Chervonenkis ’98).

Volker Roth (University of Basel) Machine Learning 19 / 41



The key theorem of learning theory

The key theorem asserts that any analysis of the convergence of ERM
must be a worst case analysis.
We will show:
Consistency depends on the capacity of the hypothesis space.

But there are some open questions:
How can we check the condition for the theorem (uniform one-sided
convergence) in practice?
Are there “simple” hypothesis classes with guaranteed consistency?
Analysis is still asymptotic.
What can we say about finite sample sizes?
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Finite hypothesis spaces
Assume the set H contains only 2 functions:

H = {f1, f2}.

Let

C i
ϵ := {(x1, y1), . . . , (xn, yn)|R[fi ] − Remp[fi ] > ϵ}

be the set of samples for which the risks of fi differ by more than ϵ.
Hoeffding’s inequality:

P(C i
ϵ) ≤ exp(−2nϵ2)

Union bound:

P(sup
f ∈H

(R[f ] − Remp[f ] > ϵ)) = P(C1
ϵ ∪ C2

ϵ ) = P(C1
ϵ ) + P(C2

ϵ ) − P(C1
ϵ ∩ C2

ϵ )

≤ P(C1
ϵ ) + P(C2

ϵ ) ≤ 2 exp(−2nϵ2).
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Finite hypothesis spaces

Assume H contains a finite number of functions: H = {f1, . . . , fN}.

C i
ϵ := {(x1, y1), . . . , (xn, yn)|R[fi ] − Remp[fi ] > ϵ}

Hoeffding’s inequality: P(C i
ϵ) ≤ exp(−2nϵ2)

Union bound: P(∪N
i=1C i

ϵ) ≤
∑N

i=1 P(C i
ϵ) ≤ N exp(−2nϵ2)

P(sup
f ∈H

(R[f ] − Remp[f ] > ϵ)) ≤ N exp(−2nϵ2) = exp(ln N − 2nϵ2)

For any finite hypothesis space, the ERM is consistent.
The convergence is exponentially fast.
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Some consequences

P(sup
f ∈H

R[f ] − Remp[f ] > ϵ) ≤ exp(ln N − 2nϵ2)

Bound holds uniformly for all functions in H
⇝ can use it for the functions that minimize Remp.
⇝ We can bound the test error:

P(R[fn] − Remp[fn] > ϵ) ≤ exp(ln N − 2nϵ2).
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Some consequences

Can derive a confidence interval: equate r.h.s. to δ and solve for ϵ:
P(R[fn] − Remp[fn] > ϵ) ≤ exp(ln N − 2nϵ2) =: δ(ϵ)
P(R[fn] − Remp[fn] ≤ ϵ) ≥ 1 − δ(ϵ)

With probability at least (1 − δ) it holds that
R[fn] ≤ Remp[fn] + ϵ(δ)

R[fn] ≤ Remp[fn] +
√√√√a

n
(

ln N︸︷︷︸
Capacity(H)

+ ln b
δ

)
, with a = 1/2, b = 1.

Bound depends only on H and n.
However: “Simple” spaces (like the space of linear functions) contain
infinitely many functions.
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Infinite to finite (?)

Observation: Remp[f ] effectively refers only to a finite function class: for
n sample points x1, . . . , xn, the functions in f ∈ H can take at most 2n

different values y1, . . . , yn.

But this does not yet solve our problem: Confidence term ln(2n)/n = ln 2
does not converge to 0 as n → ∞. But let’s formalize this idea first...
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Infinite case: Shattering Coefficient

Let a sample: Zn := {(x1, y1), . . . , (xn, yn)} be given.
Denote by N (H, Zn) the cardinality of H when restricted to
{x1, . . . , xn}, H|Zn, i.e. the number of functions from H that can be
distinguished on the given sample.
Consider now the maximum (over all possible n-samples):

Definition (Shattering Coefficient)
The Shattering Coefficient is the maximum number of ways into which n
points can be classified by the function class:

N (H, n) = max
Zn

N (H, Zn).

Since f (x) ∈ {−1, 1}, N (H, n) is finite.

N (H, Zn) ≤ N (H, n) ≤ 2n
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Example

Linear functions
H = {sign(⟨w , x⟩ + b)|w ∈ R2, b ∈ R}

N (H, 2) = 4 = 22
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Example

N (H, 3) = 8 = 23
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Example

N (H, 4) = 14 < 24
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Capacity concepts

Recall: we search for other capacity measures of H replacing ln N.
We know N (H, Zn)︸ ︷︷ ︸

depends on sample

≤ N (H, n) ≤ 2n︸︷︷︸
too loose

Dependency on sample can be removed by averaging over all samples:
E [N (H, Zn)]. It turns out that this is a valid capacity measure:

Theorem (Vapnik and Chervonenkis)

Let Z2n = ((x1, y1), . . . , (x2n, y2n) be a sample of size 2n. For any ϵ > 0 it
holds that

P(sup
f ∈H

R[f ] − Remp[f ] > ϵ) ≤ 4 exp(ln E [N (H, Z2n)] − nϵ2

8 )

If ln E [N (H, Z2n)] grows sublinearly , we get a nontrivial bound.
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Some consequences

P(sup
f ∈H

R[f ] − Remp[f ] > ϵ) ≤ 4 exp(ln E [N (H, Z2n)] − nϵ2

8 )

Bound holds uniformly for all functions in H
⇝ can use it for the functions that minimize Remp.
⇝ We can bound the test error:

P(R[fn] − Remp[fn] > ϵ) ≤ 4E [N (H, Z2n)] exp(−nϵ2

8 ).

Can derive a confidence interval: equate r.h.s. to δ and solve for ϵ:
With probability at least (1 − δ) it holds that

R[fn] ≤ Remp[fn] + ϵ(δ)

R[fn] ≤ Remp[fn] +
√

8
n

(
ln E [N (H, Z2n)] + ln 4

δ

)
Bound depends on H, n and the unknown probability P(Z ).
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VC Dimension and other capacity concepts

Growth function : upper bound expectation by maximum:
GH(n) = ln[max

Zn
N (H, Zn)] = ln N (H, n)︸ ︷︷ ︸

Shattering coeff.

.

VC-Dimension : recall that N (H, n) ≤ 2n. Vapnik & Chervonenkis
showed that either N (H, n) = 2n for all n, or there exists some
maximal n for which this is the case.

Definition
The VC dimension h of a class H is the largest n such that

N (H, n) = 2n, or, equivalently GH(n) = n ln(2).

Interpretation: The VC-Dimension is the maximal number of
samples that can be classified in all 2n possible ways.
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VC Dimension
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VC Dimension

4 Points in 2D cannot be labeled in all possible ways by linear functions.
The VC-Dimension is 3!
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A remarkable property of the growth function
Theorem (Vapnik & Chervonenkis)
Let H be a class of functions with finite VC-dimension h. Then for n ≤ h,
GH(n) grows linearly with the sample size, and for all n > h

GH(n) ≤ h
(

ln n
h + 1

)
.
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Capacity concepts

Relation of capacity concepts:

ln E [N (H, Z2n)]︸ ︷︷ ︸
distribution dependent

≤ GH(n) ≤

(sometimes) easy to compute︷ ︸︸ ︷
h

(
ln n

h + 1
)

︸ ︷︷ ︸
distribution independent

Structure of bounds:

R[fn] ≤ Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)
If the VC Dimension is finite, we get non-trivial bounds!
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VC-Dimension for linear functions
Theorem
The VC dimension of linear functions in d-dimensional space is d + 1.

Question: Does the number of parameters coincide with the
VC-Dimension? No!! Counter example:

FIGURE 7.5 in (Hastie et al.: The Elements of Statistical Learning). Solid curve: sin(50x) for x ∈ [0, 1]. Blue and green points

illustrate how sign(sin(αx)) can separate an arbitrarily large number of points by choosing a high frequency α.

The VC-Dimension of {sign(sin(αx))|α ∈ R} is infinite.
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Linear functions: Role of the margin

Recall: the VC dimension of linear functions on Rd is d + 1.
We need finite VC dimension for “simple” nontrivial bounds.
Question: is learning impossible in infinite dimensional spaces
(e.g. Gaussian RBF kernels)?
Not necessarily! The capacity of the subset of hyperplanes with
large classification margin can be much smaller than the general
VC dimension of all hyperplanes.
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Recall: Decision hyperplanes
f (x; w) defines distance r from x to the hyperplane: x = xp + r w

∥w∥ .
f (xp) = 0 ⇒ f (x) = r∥w∥ ⇔ r = f (x)/∥w∥.

x

g(x) =
 0w

x1

x2

x3

w 0 /||
w
||

r

H

xp

R1

R2

FIGURE 5.2. The linear decision boundary H, where g(x) = wtx+w0 = 0, separates the
feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0). From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

Fig 5.2 in Duda, Hart & Stork: Pattern Classification. Wiley 2001.
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Canonical hyperplanes

Definition of hyperplane is not unique: weight vector w can be
multiplied by any nonzero constant.
The definition of a canonical hyperplane overcomes this ambiguity by
additionally requiring

min
i=1,...,n

∣∣w tx i + w0
∣∣ = 1.

Distance between canonical hyperplane and the closest point:
margin r = 1/∥w∥.
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Structure on canonical hyperplanes

Theorem (Vapnik, 1982)
Let R be the radius of the smallest ball containing the points x1, . . . , xn:
BR(a) = {x ∈ Rd : ∥x − a∥ < R, a ∈ Rd}. The set of canonical
hyperplane decision functions f (w , w0) = sign{w tx + w0} satisfying
∥w∥ ≤ A has VC dimension h bounded by

h ≤ R2A2 + 1.

Intuitive interpretation: margin = 1/∥w∥
⇝ minimizing capacity(H) corresponds to maximizing the margin.

Structure of bounds:

R[fn] ≤ Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)

⇝ Large margin classifiers.

Volker Roth (University of Basel) Machine Learning 41 / 41


