# Machine Learning 

Volker Roth

Department of Mathematics \& Computer Science<br>University of Basel

## Chapter 7: Support Vector Machines and Kernels

$$
R\left[f_{n}\right] \leq R_{\mathrm{emp}}\left[f_{n}\right]+\sqrt{\frac{a}{n}\left(\operatorname{capacity}(\mathcal{H})+\ln \frac{b}{\delta}\right)}
$$

$\rightsquigarrow$ minimizing capacity $(\mathcal{H})$ corresponds to maximizing the margin. $\rightsquigarrow$ Large margin classifiers.

## SVMs

- When the training examples are linearly separable we can maximize the margin by minimizing the regularization term

$$
\|\boldsymbol{w}\|^{2} / 2=\sum_{i=1}^{d} w_{i}^{2} / 2
$$

subject to the classification constraints

$$
y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]-1 \geq 0, i=1, \ldots, n .
$$



0

- The solution is defined only on the basis of a subset of examples or support vectors.


## SVMs: nonseparable case

- Modify optimization problem slightly by adding a penalty for violating the classification constraints:

$$
\operatorname{minimize}\|\boldsymbol{w}\|^{2} / 2+C \sum_{i=1}^{n} \xi_{i}
$$

subject to relaxed constraints

$$
y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]-1+\xi_{i} \geq 0, i=1, \ldots, n .
$$



- The $\xi_{i} \geq 0$ are called slack variables.


## SVMs: nonseparable case

- We can also write the SVM optimization problem more compactly as

$$
C \sum_{i=1}^{n} \overbrace{\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)^{+}}^{\xi_{i}}+\|\boldsymbol{w}\|^{2} / 2
$$

where $(z)^{+}=z$ if $z \geq 0$ and zero otherwise.

- This is equivalent to regularized empirical loss minimization

$$
\underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)^{+}}_{R_{\text {emp }}}+\lambda\|\boldsymbol{w}\|^{2}
$$

where $\lambda=1 /(2 n C)$ is the regularization parameter.

## SVMs and LOGREG

- When viewed from the point of view of regularized empirical loss minimization, SVM and logistic regression appear quite similar:

$$
\begin{array}{r}
\text { SVM: } \frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)^{+}+\lambda\|\boldsymbol{w}\|^{2} \\
\text { LOGREG: } \frac{1}{n} \sum_{i=1}^{n}-\log \overbrace{\sigma\left(y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)}^{P\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{w}\right)}+\lambda\|\boldsymbol{w}\|^{2},
\end{array}
$$

where $\sigma(z)=\left(1+e^{-z}\right)^{-1}$ is the logistic function.

## SVMs and LOGREG

- The difference comes from how we penalize errors:

$$
\text { Both: } \frac{1}{n} \sum_{i=1}^{n} \operatorname{Loss}(\overbrace{y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]}^{z})+\lambda\|\boldsymbol{w}\|^{2},
$$

- SVM: $\operatorname{Loss}(z)=(1-z)^{+}$
- LOGREG:
$\operatorname{Loss}(z)=\log (1+\exp (-z))$



## SVMs: solution, Lagrange multipliers

- Back to the separable case: how do we solve

$$
\operatorname{minimize}_{\boldsymbol{w}} \quad\|\boldsymbol{w}\|^{2} / 2 \quad \text { s.t. } \quad y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]-1 \geq 0, i=1, \ldots, n .
$$

- Represent the constraints as individual loss terms:

$$
\sup _{\alpha_{i} \geq 0} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)= \begin{cases}0, & \text { if } y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]-1 \geq 0 \\ \infty, & \text { otherwise }\end{cases}
$$

- Rewrite the minimization problem:

$$
\begin{aligned}
\operatorname{minimize}_{\boldsymbol{w}} & \|\boldsymbol{w}\|^{2} / 2+\sum_{i=1}^{n} \sup _{\alpha_{i} \geq 0} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right) \\
=\text { minimize }_{\boldsymbol{w}} & \sup _{\alpha_{i} \geq 0}\left(\|\boldsymbol{w}\|^{2} / 2+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)\right)
\end{aligned}
$$

## SVMs: solution, Lagrange multipliers

- Swap maximization and minimization (technically this requires that the problem is convex and feasible $\rightsquigarrow$ Slater's condition):

$$
\left.\begin{array}{rl} 
& \operatorname{minimize}_{\boldsymbol{w}}\left[\sup _{\alpha_{i} \geq 0}\left(\|\boldsymbol{w}\|^{2} / 2+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)\right)\right] \\
= & \operatorname{maximize}_{\alpha_{i} \geq 0}[\min _{\boldsymbol{w}}(\underbrace{\|\boldsymbol{w}\|^{2} / 2+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right.}_{J(\boldsymbol{w} ; \boldsymbol{\alpha})})
\end{array}\right]
$$

- We have to minimize $J(\boldsymbol{w} ; \boldsymbol{\alpha})$ over parameters $\boldsymbol{w}$ for fixed Lagrange multipliers $\alpha_{i} \geq 0$.
Simple, because $J(\boldsymbol{w})$ is convex $\rightsquigarrow$ set derivative to zero $\rightsquigarrow$ only one stationary point $\rightsquigarrow$ global minimum.


## SVMs: solution, Lagrange multipliers

- Find optimal $\boldsymbol{w}$ by setting the derivatives to zero:

$$
\frac{\partial}{\partial \boldsymbol{w}} J(\boldsymbol{w} ; \boldsymbol{\alpha})=\boldsymbol{w}-\sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i}=0 \Rightarrow \hat{\boldsymbol{w}}=\sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i}
$$

- Substitute the solution back into the objective and get (after some re-arrangements of terms):

$$
\begin{aligned}
& \max _{\alpha_{i} \geq 0} \min _{\boldsymbol{w}}\left(\|\boldsymbol{w}\|^{2} / 2+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{w}\right]\right)\right) \\
= & \max _{\alpha_{i} \geq 0}\left(\|\hat{\boldsymbol{w}}\|^{2} / 2+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left[\boldsymbol{x}_{i}^{t} \hat{\boldsymbol{w}}\right]\right)\right) \\
= & \max _{\alpha_{i} \geq 0}\left(\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j}\right)
\end{aligned}
$$

## SVMs: summary

- Find optimal Lagrange multipliers $\hat{\alpha}_{i}$ by maximizing

$$
\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j} \quad \text { subject to } \alpha_{i} \geq 0
$$

- Only $\hat{\alpha}_{i}$ 's corresponding to support vectors will be non-zero.
- Make predictions on any new example $\boldsymbol{x}$ according to:

$$
\operatorname{sign}\left(\boldsymbol{x}^{t} \hat{\boldsymbol{w}}\right)=\operatorname{sign}\left(\boldsymbol{x}^{t} \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \boldsymbol{x}_{i}\right)=\operatorname{sign}\left(\sum_{i \in S V} \hat{\alpha}_{i} y_{i} \boldsymbol{x}^{t} \boldsymbol{x}_{i}\right)
$$

- Observation: dependency on input vectors only via dot products.
- Later we will introduce the kernel trick for efficiently computing these dot products in implicitly defined feature spaces.


## SVMs: formal derivation

- Convex optimization problem: an optimization problem

| $\operatorname{minimize}$ | $f(\boldsymbol{x})$ |
| :--- | :--- |
| subject to | $g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \ldots, m$ |

is convex if the functions $f, g_{1} \ldots g_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex.

- The Lagrangian function for the problem is

$$
\mathcal{L}\left(\boldsymbol{x}, \lambda_{0}, \ldots, \lambda_{m}\right)=\lambda_{0} f(\boldsymbol{x})+\lambda_{1} g_{1}(\boldsymbol{x})+\ldots+\lambda_{m} g_{m}(\boldsymbol{x})
$$

- Karush-Kuhn-Tucker (KKT) conditions: For each point $\hat{\boldsymbol{x}}$ that minimizes $f$, there exist real numbers $\lambda_{0}, \ldots, \lambda_{m}$, called Lagrange multipliers, that simultaneously satisfy:
(1) $\hat{\boldsymbol{x}}$ minimizes $\mathcal{L}\left(\boldsymbol{x}, \lambda_{0}, \lambda_{1}, \ldots, \lambda_{m}\right)$,
(2) $\lambda_{0} \geq 0, \lambda_{1} \geq 0, \ldots, \lambda_{m} \geq 0$, with at least one $\lambda_{k}>0$,
(3) Complementary slackness: $g_{i}(\hat{\boldsymbol{x}})<0 \Rightarrow \lambda_{i}=0,1 \leq i \leq m$.


## SVMs: formal derivation

- Slater's condition: If there exists a strictly feasible point $z$ satisfying $g_{1}(z)<0, \ldots, g_{m}(z)<0$, then one can set $\lambda_{0}=1$.
- Assume that Slater's condition holds. Minimizing the supremum $\mathcal{L}^{*}(\boldsymbol{x})=\sup _{\lambda \geq 0} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})$, is the primal problem $\mathbf{P}$ :

$$
\hat{\boldsymbol{x}}=\underset{x}{\operatorname{argmin}} \mathcal{L}^{*}(\boldsymbol{x})
$$

Note that

$$
\mathcal{L}^{*}(\boldsymbol{x})=\sup _{\lambda \geq 0}\left(f(\boldsymbol{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\boldsymbol{x})\right)= \begin{cases}f(\boldsymbol{x}) & , \text { if } g_{i}(\boldsymbol{x}) \leq 0 \forall i \\ \infty & , \text { else }\end{cases}
$$

$\rightsquigarrow$ Minimizing $\mathcal{L}^{*}(\boldsymbol{x})$ is equivalent to minimizing $f(\boldsymbol{x})$.

- The maximizer of the dual problem $\mathbf{D}$ is

$$
\hat{\boldsymbol{\lambda}}=\underset{\boldsymbol{\lambda}}{\operatorname{argmax}} \mathcal{L}_{*}(\boldsymbol{\lambda}), \text { where } \mathcal{L}_{*}(\boldsymbol{\lambda})=\inf _{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})
$$

## SVMs: formal derivation

- The non-negative number $\min (P)-\max (D)$ is the duality gap.
- Convexity and Slater's condition imply strong duality:
(1) The optimal solution $(\hat{x}, \hat{\lambda})$ is a saddle point of $\mathcal{L}(x, \lambda)$
(2) The duality gap is zero.
- Discussion: For any real function $f(a, b)$ $\min _{a}\left[\max _{b} f(a, b)\right] \geq \max _{b}\left[\min _{a} f(a, b)\right]$.
Equality $\rightsquigarrow$ saddle value exists.



## Kernel functions

- A kernel function is a real-valued function of two arguments, $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \in \mathbb{R}$, for $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}$.
- Typically the function is symmetric, and sometimes non-negative.
- In the latter case, it might be interpreted as a measure of similarity.
- Example: isotropic Gaussian kernel:

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Here, $\sigma^{2}$ is the bandwidth. This is an example of a radial basis function (RBF) kernel (only a function of $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2}$ ).

## Mercer kernels

- A symmetric kernel is a Mercer kernel, iff the Gram matrix

$$
K=\left(\begin{array}{ccc}
k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & \ldots & k\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{n}\right) \\
& \vdots & \\
k\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{1}\right) & \ldots & k\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{n}\right)
\end{array}\right)
$$

is positive semidefinite for any set of inputs $\left\{\boldsymbol{x}_{i}, \ldots, \boldsymbol{x}_{n}\right\}$.

- Mercer's theorem: Eigenvector decomposition

$$
K=V \Lambda V^{t}=\left(V \Lambda^{1 / 2}\right)\left(V \Lambda^{1 / 2}\right)^{t}=: \Phi \Phi^{t}
$$

Eigenvectors: columns of $V$. Eigenvalues: entries of diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Note that $\lambda_{i} \in \mathbb{R}$ and $\lambda_{i} \geq 0$.
Define $\phi\left(\boldsymbol{x}_{i}\right)^{t}=i$-th row of $\phi=V_{[i \boldsymbol{e}]} \Lambda^{1 / 2}$ $\rightsquigarrow k\left(x_{i}, x_{i^{\prime}}\right)=\phi\left(x_{i}\right)^{t} \phi\left(x_{i^{\prime}}\right)$.

- Entries of $K$ : inner product of some feature vectors, implicitly defined by eigenvectors $V$.


## Mercer kernels

- If the kernel is Mercer, then there exists $\phi: \boldsymbol{x} \rightarrow \mathbb{R}^{d}$ such that

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\phi(\boldsymbol{x})^{t} \phi\left(\boldsymbol{x}^{\prime}\right)
$$

where $\phi$ depends on the eigenfunctions of $k$ ( $d$ might be infinite).

- Example: Polynomial kernel

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(1+\boldsymbol{x}^{t} \boldsymbol{x}^{\prime}\right)^{m}
$$

Corresponding feature vector contains terms up to degree $m$.
Example: $m=2, x \in \mathbb{R}^{2}$ :

$$
\left(1+\boldsymbol{x}^{t} \boldsymbol{x}^{\prime}\right)^{2}=1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+\left(x_{1} x_{1}^{\prime}\right)^{2}+\left(x_{2} x_{2}^{\prime}\right)^{2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime} .
$$

Thus,

$$
\phi(\boldsymbol{x})=\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right]^{t} .
$$

Equivalent to working in a 6 -dim feature space.

- Gaussian kernel: feature map lives in an infinite dimensional space.


## Kernels for documents

- In document classification or retrieval, we want to compare two documents, $\boldsymbol{x}_{i}$ and $\boldsymbol{x}_{i^{\prime}}$.
- Bag of words representation: $x_{i j}$ is the number of times word $j$ occurs in document $i$.
- One possible choice: Cosine similarity:

$$
k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i^{\prime}}\right)=\frac{\boldsymbol{x}_{i}^{t} \boldsymbol{x}_{i^{\prime}}}{\left\|\boldsymbol{x}_{i}\right\|\left\|\boldsymbol{x}_{i^{\prime}}\right\|}=: \phi\left(\boldsymbol{x}_{i}\right)^{t} \phi\left(\boldsymbol{x}_{i^{\prime}}\right)
$$

- Problems:
- Popular words (like "the" or "and") are not discriminative $\rightsquigarrow$ remove these stop words.
- Bias: once a word is used in a document, it is very likely to be used again.
- Solution: Replace word counts with "normalized" representation.


## Kernels for documents

- TF-IDF "term frequency inverse document frequency":

Term frequency is log-transform of the count:

$$
\operatorname{tf}\left(x_{i j}\right)=\log \left(1+x_{i j}\right)
$$

Inverse document frequency:

$$
\operatorname{idf}(j)=\log \frac{\#(\text { documents })}{\#(\text { documents containing term } j)}=\log \frac{1}{\hat{p}_{j}} .
$$

$\rightsquigarrow$ Shannon information content:
idf is a measure of how much information a word provides

- Combine with $\mathrm{tf} \rightsquigarrow$ counts weighted by information content:

$$
\operatorname{tf}-\operatorname{idf}\left(x_{i}\right)=\left[\operatorname{tf}\left(x_{i j}\right) \cdot \operatorname{idf}(j)\right]_{j=1}^{V}, \quad \text { where } V=\text { size of vocabulary. }
$$

- We then use this inside the cosine similarity measure. With $\phi(x)=\operatorname{tf}-\operatorname{idf}(x)$ :

$$
k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i^{\prime}}\right)=\frac{\phi\left(\boldsymbol{x}_{i}\right)^{t} \phi\left(\boldsymbol{x}_{i^{\prime}}\right)}{\left\|\phi\left(\boldsymbol{x}_{i}\right)\right\|\left\|\phi\left(\boldsymbol{x}_{i^{\prime}}\right)\right\|}
$$

## String kernels

- Real power of kernels arises for structured input objects.
- Consider two strings $x$, and $x^{\prime}$ of lengths $d, d^{\prime}$, over alphabet $\mathcal{A}$. Idea: define similarity as the number of common substrings.
- If $s$ is a substring of $x \rightsquigarrow \phi_{s}(x)=$ number of times $s$ appears in $x$.
- String kernel

$$
k\left(x, x^{\prime}\right)=\sum_{s \in \mathcal{A}^{*}} w_{s} \phi_{s}(x) \phi_{s}\left(x^{\prime}\right)
$$

where $w_{s} \geq 0$ and $\mathcal{A}^{*}=$ set of all strings (any length) from $\mathcal{A}$.

- One can show: Mercer kernel, can be computed in $O\left(|x|+\left|x^{\prime}\right|\right)$ time using suffix trees (Shawe-Taylor and Cristianini, 2004).
- Special case: $w_{s}=0$ for $|s|>1$ : bag-of-characters kernel: $\phi(x)$ is the number of times each character in $\mathcal{A}$ occurs in $x$.


## The kernel trick

- Idea: modify algorithm so that it replaces all inner products $\boldsymbol{x}^{t} \boldsymbol{x}^{\prime}$ with a call to the kernel function $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$.
- Kernelized ridge regression: $\hat{\boldsymbol{w}}=\left(X^{t} X+\lambda I\right)^{-1} X^{t} \boldsymbol{y}$.

Matrix inversion lemma:

$$
(I+U V)^{-1} U=U(I+V U)^{-1}
$$

Define new variables $\alpha_{i}$ :

$$
\begin{aligned}
\hat{\boldsymbol{w}} & =\left(X^{t} X+\lambda I\right)^{-1} X^{t} \boldsymbol{y} \\
& =X^{t} \underbrace{\left(X X^{t}+\lambda I\right)^{-1} \boldsymbol{y}}_{\hat{\boldsymbol{\alpha}}}=\sum_{i=1}^{n} \hat{\alpha}_{i} \boldsymbol{x}_{i} .
\end{aligned}
$$

$\rightsquigarrow$ solution is linear sum of the $n$ training vectors.

## The kernel trick

- Use this and the kernel trick to make predictions for $\boldsymbol{x}$ :

$$
\hat{f}(\boldsymbol{x})=\hat{\boldsymbol{w}}^{t} \boldsymbol{x}=\sum_{i=1}^{n} \hat{\alpha}_{i} \boldsymbol{x}_{i}^{t} \boldsymbol{x}=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)
$$

- Same for SVMs:

$$
\hat{\boldsymbol{w}}^{t} \boldsymbol{x}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i} \boldsymbol{x}_{i}^{t} \boldsymbol{x}=\sum_{i \in S V} \hat{\alpha}_{i}^{\prime} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)
$$

- ...and for most other classical algorithms in ML!


## Some applications in bioinformatics

- Bioinformatics: often non-vectorial data-types:
- interaction graphs
- phylogenetic trees

- strings GSAQVKGHGKKVADALTNAVAHV
- Data fusion: convert data of each type into kernel matrix $\Rightarrow$ fuse kernel matrices
$\Rightarrow$ "common language" for heterogeneous data.


## RBF kernels from expression data

- Measurements (for each gene): vector of expression values under different experimental conditions
- "classical" RBF kernel $k\left(x_{1}, x_{2}\right)=\exp \left(-\sigma\left\|x_{1}-x_{2}\right\|^{2}\right)$



## Diffusion kernels from interaction-graphs

- A: Adjacency matrix, $D$ : node degrees, $L=D-A$.
- $K:=\frac{1}{Z(\beta)} \exp (-\beta L)$ with transition probabilities $\beta$.
- Physical interpretation (random walk): randomly choose next node among neighbors.
- Self-transition occurs with prob. $1-d_{i} \beta$

- $K_{i j}$ : prob. for walk from $i$ to $j$.
(Kondor and Lafferty, 2002)


## Alignment kernels from sequences

## Alignment with Pair HMMs

$\rightsquigarrow$ Mercer kernel (Watkins, 2000).
Image source: Durbin, Eddy, Krogh, Mitchison. Biological Sequence Alignment. Cambridge.


HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

$$
++++++\mathrm{H}+\mathrm{KV} \quad++\mathrm{A} \quad++\quad+\mathrm{L}+\mathrm{L}+++\mathrm{H}+\mathrm{K}
$$

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG


## Combination of heterogeneous data

## Adding kernels $\Rightarrow$ new kernel:

$k_{1}(x, y)=\phi_{1}(x) \cdot \phi_{1}(y)$,
$k_{2}(x, y)=\phi_{2}(x) \cdot \phi_{2}(y)$

$$
\Rightarrow k^{\prime}=k_{1}+k_{2}=\binom{\phi_{1}(x)}{\phi_{2}(x)} \cdot\binom{\phi_{1}(y)}{\phi_{2}(y)}
$$

Fusion \& relevance determination: kernel-combinations


