
Machine Learning

Volker Roth

Department of Mathematics & Computer Science
University of Basel

Volker Roth (University of Basel) Machine Learning 1 / 27

Chapter 7: Support Vector Machines and Kernels

R[fn] ≤ Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)
⇝ minimizing capacity(H) corresponds to maximizing the margin.
⇝ Large margin classifiers.

Volker Roth (University of Basel) Machine Learning 2 / 27

SVMs

When the training examples are linearly separable we can maximize
the margin by minimizing the regularization term

∥w∥2/2 =
d∑

i=1
w2

i /2

subject to the classification constraints
yi [xt

i w] − 1 ≥ 0, i = 1, . . . , n.

x

x

x

x

x
x

x

o

o

o

o
o

o
ox

W

The solution is defined only on the basis of a subset of examples or
support vectors.

Volker Roth (University of Basel) Machine Learning 3 / 27

SVMs: nonseparable case

Modify optimization problem slightly by adding a
penalty for violating the classification constraints:

minimize ∥w∥2/2 + C
n∑

i=1
ξi

subject to relaxed constraints
yi [xt

i w] − 1 + ξi ≥ 0, i = 1, . . . , n.

x

x

x

x

x
x

x

o

o

o

o
o

o
ox

W x

x

o

The ξi ≥ 0 are called slack variables.

Volker Roth (University of Basel) Machine Learning 4 / 27

SVMs: nonseparable case

We can also write the SVM optimization problem more compactly as

C
n∑

i=1

ξi︷ ︸︸ ︷
(1 − yi [xt

i w])+ + ∥w∥2/2,

where (z)+ = z if z ≥ 0 and zero otherwise.
This is equivalent to regularized empirical loss minimization

1
n

n∑
i=1

(1 − yi [xt
i w])+

︸ ︷︷ ︸
Remp

+ λ∥w∥2,

where λ = 1/(2nC) is the regularization parameter.

Volker Roth (University of Basel) Machine Learning 5 / 27

SVMs and LOGREG

When viewed from the point of view of regularized empirical loss
minimization, SVM and logistic regression appear quite similar:

SVM: 1
n

n∑
i=1

(1 − yi [xt
i w])+ + λ∥w∥2

LOGREG: 1
n

n∑
i=1

− log

P(yi |x i ,w)︷ ︸︸ ︷
σ(yi [xt

i w]) + λ∥w∥2,

where σ(z) = (1 + e−z)−1 is the logistic function.

Volker Roth (University of Basel) Machine Learning 6 / 27

SVMs and LOGREG

The difference comes from how we penalize errors:

Both: 1
n

n∑
i=1

Loss(
z︷ ︸︸ ︷

yi [xt
i w]) + λ∥w∥2,

SVM: Loss(z) = (1 − z)+

LOGREG:
Loss(z) = log(1 + exp(−z))

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Volker Roth (University of Basel) Machine Learning 7 / 27

SVMs: solution, Lagrange multipliers
Back to the separable case: how do we solve

minimizew ∥w∥2/2 s.t. yi [xt
i w] − 1 ≥ 0 , i = 1, . . . , n.

Represent the constraints as individual loss terms:

sup
αi ≥0

αi(1 − yi [xt
i w]) =

{
0, if yi [xt

i w] − 1 ≥ 0 ,

∞, otherwise.

Rewrite the minimization problem:

minimizew ∥w∥2/2 +
n∑

i=1
sup
αi ≥0

αi(1 − yi [xt
i w])

= minimizew sup
αi ≥0

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w])

)

Volker Roth (University of Basel) Machine Learning 8 / 27

SVMs: solution, Lagrange multipliers

Swap maximization and minimization (technically this requires that
the problem is convex and feasible ⇝ Slater’s condition):

minimizew

[
sup
αi ≥0

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w])

)]

= maximizeαi ≥0

[
min

w

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w])︸ ︷︷ ︸

J(w ;α)

)]

We have to minimize J(w ; α) over parameters w for fixed
Lagrange multipliers αi ≥ 0.
Simple, because J(w) is convex ⇝ set derivative to zero
⇝ only one stationary point ⇝ global minimum.

Volker Roth (University of Basel) Machine Learning 9 / 27

SVMs: solution, Lagrange multipliers

Find optimal w by setting the derivatives to zero:

∂

∂w J(w ; α) = w −
∑

i
αiyix i = 0 ⇒ ŵ =

∑
i

αiyix i .

Substitute the solution back into the objective and get
(after some re-arrangements of terms):

max
αi ≥0

min
w

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w])

)

=max
αi ≥0

(
∥ŵ∥2/2 +

n∑
i=1

αi(1 − yi [xt
i ŵ])

)

=max
αi ≥0

(n∑
i=1

αi − 1
2

n∑
i ,j=1

yiyjαiαjxt
i x j

)

Volker Roth (University of Basel) Machine Learning 10 / 27

SVMs: summary

Find optimal Lagrange multipliers α̂i by maximizing
n∑

i=1
αi − 1

2

n∑
i ,j=1

yiyjαiαjxt
i x j subject to αi ≥ 0.

Only α̂i ’s corresponding to support vectors will be non-zero.
Make predictions on any new example x according to:

sign(xtŵ) = sign(xt
n∑

i=1
α̂iyix i) = sign(

∑
i∈SV

α̂iyi xtx i).

Observation: dependency on input vectors only via dot products.
Later we will introduce the kernel trick for efficiently computing
these dot products in implicitly defined feature spaces.

Volker Roth (University of Basel) Machine Learning 11 / 27

SVMs: formal derivation

Convex optimization problem: an optimization problem

minimize f (x) (1)
subject to gi(x) ≤ 0, i = 1, . . . , m (2)

is convex if the functions f , g1 . . . gm : Rn → R are convex.
The Lagrangian function for the problem is

L(x, λ0, ..., λm) = λ0f (x) + λ1g1(x) + ... + λmgm(x).

Karush-Kuhn-Tucker (KKT) conditions: For each point x̂ that
minimizes f , there exist real numbers λ0, . . . , λm,
called Lagrange multipliers, that simultaneously satisfy:

1 x̂ minimizes L(x, λ0, λ1, . . . , λm),
2 λ0 ≥ 0, λ1 ≥ 0, . . . , λm ≥ 0, with at least one λk > 0,
3 Complementary slackness: gi(x̂) < 0 ⇒ λi = 0 , 1 ≤ i ≤ m.

Volker Roth (University of Basel) Machine Learning 12 / 27

SVMs: formal derivation
Slater’s condition: If there exists a strictly feasible point z
satisfying g1(z) < 0, . . . , gm(z) < 0, then one can set λ0 = 1.
Assume that Slater’s condition holds. Minimizing the supremum
L∗(x) = supλ≥0 L(x, λ), is the primal problem P:

x̂ = argmin
x

L∗(x).

Note that

L∗(x) = sup
λ≥0

(
f (x) +

m∑
i=1

λigi(x)
)

=
{

f (x) , if gi(x) ≤ 0 ∀i
∞ , else.

⇝ Minimizing L∗(x) is equivalent to minimizing f (x).
The maximizer of the dual problem D is

λ̂ = argmax
λ

L∗(λ), where L∗(λ) = inf
x

L(x, λ).

Volker Roth (University of Basel) Machine Learning 13 / 27

SVMs: formal derivation
The non-negative number min(P) – max(D) is the duality gap.
Convexity and Slater’s condition imply strong duality:

1 The optimal solution (x̂, λ̂) is a saddle point of L(x, λ)
2 The duality gap is zero.

Discussion: For any real function f (a, b)
mina[maxb f (a, b)] ≥ maxb[mina f (a, b)] .
Equality ⇝ saddle value exists.

By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051

Volker Roth (University of Basel) Machine Learning 14 / 27

Kernel functions

A kernel function is a real-valued function of two arguments,
k(x, x ′) ∈ R, for x, x ′ ∈ X .
Typically the function is symmetric , and sometimes non-negative.
In the latter case, it might be interpreted as a measure of similarity.
Example: isotropic Gaussian kernel:

k(x, x ′) = exp
(

−∥x − x ′∥2

2σ2

)
Here, σ2 is the bandwidth. This is an example of a
radial basis function (RBF) kernel (only a function of ∥x − x ′∥2).

Volker Roth (University of Basel) Machine Learning 15 / 27

Mercer kernels

A symmetric kernel is a Mercer kernel , iff the Gram matrix

K =

 k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)


is positive semidefinite for any set of inputs {x i , . . . , xn}.
Mercer’s theorem: Eigenvector decomposition

K = V ΛV t = (V Λ1/2)(V Λ1/2)t =: ΦΦt .

Eigenvectors: columns of V . Eigenvalues: entries of diagonal matrix
Λ = diag(λ1, . . . , λn). Note that λi ∈ R and λi ≥ 0.
Define ϕ(x i)t = i-th row of Φ = V[i•]Λ1/2

⇝ k(x i , x i ′) = ϕ(x i)tϕ(x i ′).
Entries of K : inner product of some feature vectors ,
implicitly defined by eigenvectors V .

Volker Roth (University of Basel) Machine Learning 16 / 27

Mercer kernels

If the kernel is Mercer , then there exists ϕ : x → Rd such that
k(x, x ′) = ϕ(x)tϕ(x ′),

where ϕ depends on the eigenfunctions of k (d might be infinite).
Example: Polynomial kernel

k(x, x ′) = (1 + xtx ′)m.

Corresponding feature vector contains terms up to degree m.
Example: m = 2, x ∈ R2:

(1 + xtx ′)2 = 1 + 2x1x ′
1 + 2x2x ′

2 + (x1x ′
1)2 + (x2x ′

2)2 + 2x1x ′
1x2x ′

2.

Thus,
ϕ(x) = [1,

√
2x1,

√
2x2, x2

1 , x2
2 ,

√
2x1x2]t .

Equivalent to working in a 6-dim feature space.
Gaussian kernel: feature map lives in an infinite dimensional space.

Volker Roth (University of Basel) Machine Learning 17 / 27

Kernels for documents

In document classification or retrieval, we want to compare two
documents, x i and x i ′ .
Bag of words representation:
x ij is the number of times word j occurs in document i .
One possible choice: Cosine similarity:

k(x i , x i ′) = xt
i x i ′

∥x i∥∥x i ′∥
=: ϕ(x i)tϕ(x i ′).

Problems:
▶ Popular words (like “the” or “and”) are not discriminative
⇝ remove these stop words.

▶ Bias: once a word is used in a document,
it is very likely to be used again.

Solution: Replace word counts with “normalized” representation.

Volker Roth (University of Basel) Machine Learning 18 / 27

Kernels for documents
TF-IDF “term frequency inverse document frequency”:
Term frequency is log-transform of the count:

tf(xij) = log(1 + xij)
Inverse document frequency:

idf(j) = log #(documents)
#(documents containing term j) = log 1

p̂j
.

⇝ Shannon information content:
idf is a measure of how much information a word provides
Combine with tf ⇝ counts weighted by information content:

tf-idf(x i) = [tf(x ij) · idf(j)]Vj=1, where V = size of vocabulary.
We then use this inside the cosine similarity measure.
With ϕ(x) = tf-idf(x):

k(x i , x i ′) = ϕ(x i)tϕ(x i ′)
∥ϕ(x i)∥∥ϕ(x i ′)∥ .

Volker Roth (University of Basel) Machine Learning 19 / 27

String kernels

Real power of kernels arises for structured input objects.
Consider two strings x , and x ′ of lengths d , d ′, over alphabet A.
Idea: define similarity as the number of common substrings.
If s is a substring of x ⇝ ϕs(x) = number of times s appears in x .
String kernel

k(x , x ′) =
∑

s∈A∗
wsϕs(x)ϕs(x ′),

where ws ≥ 0 and A∗ = set of all strings (any length) from A.
One can show: Mercer kernel, can be computed in O(|x | + |x ′|) time
using suffix trees (Shawe-Taylor and Cristianini, 2004).
Special case: ws = 0 for |s| > 1: bag-of-characters kernel:
ϕ(x) is the number of times each character in A occurs in x .

Volker Roth (University of Basel) Machine Learning 20 / 27

The kernel trick

Idea: modify algorithm so that it replaces all inner products xtx ′

with a call to the kernel function k(x, x ′).
Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma:

(I + UV)−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

⇝ solution is linear sum of the n training vectors.

Volker Roth (University of Basel) Machine Learning 21 / 27

The kernel trick

Use this and the kernel trick to make predictions for x:

f̂ (x) = ŵ tx =
n∑

i=1
α̂ixt

i x =
n∑

i=1
α̂ik(x i , x).

Same for SVMs:
ŵ tx =

∑
i∈SV

α̂iyixt
i x =

∑
i∈SV

α̂′
ik(x i , x)

...and for most other classical algorithms in ML!

Volker Roth (University of Basel) Machine Learning 22 / 27

Some applications in bioinformatics

Bioinformatics: often non-vectorial data-types:

▶ interaction graphs

▶ phylogenetic trees
▶ strings GSAQVKGHGKKVADALTNAVAHV

Data fusion: convert data of each type into kernel matrix
⇒ fuse kernel matrices
⇒ “common language” for heterogeneous data.

Volker Roth (University of Basel) Machine Learning 23 / 27

RBF kernels from expression data

Measurements (for each gene): vector of expression values under
different experimental conditions
“classical” RBF kernel k(x1, x2) = exp(−σ∥x1 − x2∥2)

Volker Roth (University of Basel) Machine Learning 24 / 27

Diffusion kernels from interaction-graphs

A: Adjacency matrix, D: node degrees, L = D − A.
K := 1

Z(β) exp(−βL) with transition probabilities β.
Physical interpretation (random walk):
randomly choose next node among neighbors.
Self-transition occurs with prob. 1 − diβ

Kij : prob. for walk from i to j .
(Kondor and Lafferty, 2002)

Volker Roth (University of Basel) Machine Learning 25 / 27

Alignment kernels from sequences

Alignment with Pair HMMs
⇝ Mercer kernel (Watkins, 2000).
Image source: Durbin, Eddy, Krogh, Mitchison. Biological Se-

quence Alignment. Cambridge.

Volker Roth (University of Basel) Machine Learning 26 / 27

Combination of heterogeneous data
Adding kernels ⇒ new kernel:
k1(x , y) = ϕ1(x) · ϕ1(y),
k2(x , y) = ϕ2(x) · ϕ2(y) ⇒ k ′ = k1 + k2 =

(ϕ1(x)
ϕ2(x)

)
·
(ϕ1(y)

ϕ2(y)
)

Fusion & relevance determination: kernel-combinations

= 1 ++ 2 3 + 4K K K K K1 2 3 4ccc c

Volker Roth (University of Basel) Machine Learning 27 / 27

