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Chapter 7: Support Vector Machines and Kernels

R[fn] ≤ Remp[fn] +
√

a
n

(
capacity(H) + ln b

δ

)
⇝ minimizing capacity(H) corresponds to maximizing the margin.
⇝ Large margin classifiers.

Volker Roth (University of Basel) Machine Learning 2 / 27



SVMs

When the training examples are linearly separable we can maximize
the margin by minimizing the regularization term

∥w∥2/2 =
d∑

i=1
w2

i /2

subject to the classification constraints
yi [xt

i w ] − 1 ≥ 0, i = 1, . . . , n.
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The solution is defined only on the basis of a subset of examples or
support vectors.
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SVMs: nonseparable case

Modify optimization problem slightly by adding a
penalty for violating the classification constraints:

minimize ∥w∥2/2 + C
n∑

i=1
ξi

subject to relaxed constraints
yi [xt

i w ] − 1 + ξi ≥ 0, i = 1, . . . , n.
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The ξi ≥ 0 are called slack variables.
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SVMs: nonseparable case

We can also write the SVM optimization problem more compactly as

C
n∑

i=1

ξi︷ ︸︸ ︷
(1 − yi [xt

i w ])+ + ∥w∥2/2,

where (z)+ = z if z ≥ 0 and zero otherwise.
This is equivalent to regularized empirical loss minimization

1
n

n∑
i=1

(1 − yi [xt
i w ])+

︸ ︷︷ ︸
Remp

+ λ∥w∥2,

where λ = 1/(2nC) is the regularization parameter.
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SVMs and LOGREG

When viewed from the point of view of regularized empirical loss
minimization, SVM and logistic regression appear quite similar:

SVM: 1
n

n∑
i=1

(1 − yi [xt
i w ])+ + λ∥w∥2

LOGREG: 1
n

n∑
i=1

− log

P(yi |x i ,w)︷ ︸︸ ︷
σ(yi [xt

i w ]) + λ∥w∥2,

where σ(z) = (1 + e−z)−1 is the logistic function.
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SVMs and LOGREG

The difference comes from how we penalize errors:

Both: 1
n

n∑
i=1

Loss(
z︷ ︸︸ ︷

yi [xt
i w ]) + λ∥w∥2,

SVM: Loss(z) = (1 − z)+

LOGREG:
Loss(z) = log(1 + exp(−z))
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SVMs: solution, Lagrange multipliers
Back to the separable case: how do we solve

minimizew ∥w∥2/2 s.t. yi [xt
i w ] − 1 ≥ 0 , i = 1, . . . , n.

Represent the constraints as individual loss terms:

sup
αi ≥0

αi(1 − yi [xt
i w ]) =

{
0, if yi [xt

i w ] − 1 ≥ 0 ,

∞, otherwise.

Rewrite the minimization problem:

minimizew ∥w∥2/2 +
n∑

i=1
sup
αi ≥0

αi(1 − yi [xt
i w ])

= minimizew sup
αi ≥0

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w ])

)
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SVMs: solution, Lagrange multipliers

Swap maximization and minimization (technically this requires that
the problem is convex and feasible ⇝ Slater’s condition):

minimizew

[
sup
αi ≥0

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w ])

)]

= maximizeαi ≥0

[
min

w

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w ])︸ ︷︷ ︸

J(w ;α)

)]

We have to minimize J(w ; α) over parameters w for fixed
Lagrange multipliers αi ≥ 0.
Simple, because J(w) is convex ⇝ set derivative to zero
⇝ only one stationary point ⇝ global minimum.
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SVMs: solution, Lagrange multipliers

Find optimal w by setting the derivatives to zero:

∂

∂w J(w ; α) = w −
∑

i
αiyix i = 0 ⇒ ŵ =

∑
i

αiyix i .

Substitute the solution back into the objective and get
(after some re-arrangements of terms):

max
αi ≥0

min
w

(
∥w∥2/2 +

n∑
i=1

αi(1 − yi [xt
i w ])

)

=max
αi ≥0

(
∥ŵ∥2/2 +

n∑
i=1

αi(1 − yi [xt
i ŵ ])

)

=max
αi ≥0

( n∑
i=1

αi − 1
2

n∑
i ,j=1

yiyjαiαjxt
i x j

)
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SVMs: summary

Find optimal Lagrange multipliers α̂i by maximizing
n∑

i=1
αi − 1

2

n∑
i ,j=1

yiyjαiαjxt
i x j subject to αi ≥ 0.

Only α̂i ’s corresponding to support vectors will be non-zero.
Make predictions on any new example x according to:

sign(xtŵ) = sign(xt
n∑

i=1
α̂iyix i) = sign(

∑
i∈SV

α̂iyi xtx i ).

Observation: dependency on input vectors only via dot products.
Later we will introduce the kernel trick for efficiently computing
these dot products in implicitly defined feature spaces.
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SVMs: formal derivation

Convex optimization problem: an optimization problem

minimize f (x) (1)
subject to gi(x) ≤ 0, i = 1, . . . , m (2)

is convex if the functions f , g1 . . . gm : Rn → R are convex.
The Lagrangian function for the problem is

L(x, λ0, ..., λm) = λ0f (x) + λ1g1(x) + ... + λmgm(x).

Karush-Kuhn-Tucker (KKT) conditions: For each point x̂ that
minimizes f , there exist real numbers λ0, . . . , λm,
called Lagrange multipliers, that simultaneously satisfy:

1 x̂ minimizes L(x, λ0, λ1, . . . , λm),
2 λ0 ≥ 0, λ1 ≥ 0, . . . , λm ≥ 0, with at least one λk > 0,
3 Complementary slackness: gi(x̂) < 0 ⇒ λi = 0 , 1 ≤ i ≤ m.
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SVMs: formal derivation
Slater’s condition: If there exists a strictly feasible point z
satisfying g1(z) < 0, . . . , gm(z) < 0, then one can set λ0 = 1.
Assume that Slater’s condition holds. Minimizing the supremum
L∗(x) = supλ≥0 L(x, λ), is the primal problem P:

x̂ = argmin
x

L∗(x).

Note that

L∗(x) = sup
λ≥0

(
f (x) +

m∑
i=1

λigi(x)
)

=
{

f (x) , if gi(x) ≤ 0 ∀i
∞ , else.

⇝ Minimizing L∗(x) is equivalent to minimizing f (x).
The maximizer of the dual problem D is

λ̂ = argmax
λ

L∗(λ), where L∗(λ) = inf
x

L(x, λ).
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SVMs: formal derivation
The non-negative number min(P) – max(D) is the duality gap.
Convexity and Slater’s condition imply strong duality:

1 The optimal solution (x̂, λ̂) is a saddle point of L(x, λ)
2 The duality gap is zero.

Discussion: For any real function f (a, b)
mina[maxb f (a, b)] ≥ maxb[mina f (a, b)] .
Equality ⇝ saddle value exists.

By Nicoguaro - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=20570051
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Kernel functions

A kernel function is a real-valued function of two arguments,
k(x, x ′) ∈ R, for x, x ′ ∈ X .
Typically the function is symmetric , and sometimes non-negative.
In the latter case, it might be interpreted as a measure of similarity.
Example: isotropic Gaussian kernel:

k(x, x ′) = exp
(

−∥x − x ′∥2

2σ2

)
Here, σ2 is the bandwidth. This is an example of a
radial basis function (RBF) kernel (only a function of ∥x − x ′∥2).
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Mercer kernels

A symmetric kernel is a Mercer kernel , iff the Gram matrix

K =

 k(x1, x1) . . . k(x1, xn)
...

k(xn, x1) . . . k(xn, xn)


is positive semidefinite for any set of inputs {x i , . . . , xn}.
Mercer’s theorem: Eigenvector decomposition

K = V ΛV t = (V Λ1/2)(V Λ1/2)t =: ΦΦt .

Eigenvectors: columns of V . Eigenvalues: entries of diagonal matrix
Λ = diag(λ1, . . . , λn). Note that λi ∈ R and λi ≥ 0.
Define ϕ(x i)t = i-th row of Φ = V[i•]Λ1/2

⇝ k(x i , x i ′) = ϕ(x i)tϕ(x i ′).
Entries of K : inner product of some feature vectors ,
implicitly defined by eigenvectors V .
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Mercer kernels

If the kernel is Mercer , then there exists ϕ : x → Rd such that
k(x, x ′) = ϕ(x)tϕ(x ′),

where ϕ depends on the eigenfunctions of k (d might be infinite).
Example: Polynomial kernel

k(x, x ′) = (1 + xtx ′)m.

Corresponding feature vector contains terms up to degree m.
Example: m = 2, x ∈ R2:

(1 + xtx ′)2 = 1 + 2x1x ′
1 + 2x2x ′

2 + (x1x ′
1)2 + (x2x ′

2)2 + 2x1x ′
1x2x ′

2.

Thus,
ϕ(x) = [1,

√
2x1,

√
2x2, x2

1 , x2
2 ,

√
2x1x2]t .

Equivalent to working in a 6-dim feature space.
Gaussian kernel: feature map lives in an infinite dimensional space.
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Kernels for documents

In document classification or retrieval, we want to compare two
documents, x i and x i ′ .
Bag of words representation:
x ij is the number of times word j occurs in document i .
One possible choice: Cosine similarity:

k(x i , x i ′) = xt
i x i ′

∥x i∥∥x i ′∥
=: ϕ(x i)tϕ(x i ′).

Problems:
▶ Popular words (like “the” or “and”) are not discriminative
⇝ remove these stop words.

▶ Bias: once a word is used in a document,
it is very likely to be used again.

Solution: Replace word counts with “normalized” representation.
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Kernels for documents
TF-IDF “term frequency inverse document frequency”:
Term frequency is log-transform of the count:

tf(xij) = log(1 + xij)
Inverse document frequency:

idf(j) = log #(documents)
#(documents containing term j) = log 1

p̂j
.

⇝ Shannon information content:
idf is a measure of how much information a word provides
Combine with tf ⇝ counts weighted by information content:

tf-idf(x i) = [tf(x ij) · idf(j)]Vj=1, where V = size of vocabulary.
We then use this inside the cosine similarity measure.
With ϕ(x) = tf-idf(x):

k(x i , x i ′) = ϕ(x i)tϕ(x i ′)
∥ϕ(x i)∥∥ϕ(x i ′)∥ .
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String kernels

Real power of kernels arises for structured input objects.
Consider two strings x , and x ′ of lengths d , d ′, over alphabet A.
Idea: define similarity as the number of common substrings.
If s is a substring of x ⇝ ϕs(x) = number of times s appears in x .
String kernel

k(x , x ′) =
∑

s∈A∗
wsϕs(x)ϕs(x ′),

where ws ≥ 0 and A∗ = set of all strings (any length) from A.
One can show: Mercer kernel, can be computed in O(|x | + |x ′|) time
using suffix trees (Shawe-Taylor and Cristianini, 2004).
Special case: ws = 0 for |s| > 1: bag-of-characters kernel:
ϕ(x) is the number of times each character in A occurs in x .
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The kernel trick

Idea: modify algorithm so that it replaces all inner products xtx ′

with a call to the kernel function k(x, x ′).
Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma:

(I + UV )−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

⇝ solution is linear sum of the n training vectors.

Volker Roth (University of Basel) Machine Learning 21 / 27



The kernel trick

Use this and the kernel trick to make predictions for x:

f̂ (x) = ŵ tx =
n∑

i=1
α̂ixt

i x =
n∑

i=1
α̂ik(x i , x).

Same for SVMs:
ŵ tx =

∑
i∈SV

α̂iyixt
i x =

∑
i∈SV

α̂′
ik(x i , x)

...and for most other classical algorithms in ML!
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Some applications in bioinformatics

Bioinformatics: often non-vectorial data-types:

▶ interaction graphs

▶ phylogenetic trees
▶ strings GSAQVKGHGKKVADALTNAVAHV

Data fusion: convert data of each type into kernel matrix
⇒ fuse kernel matrices
⇒ “common language” for heterogeneous data.
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RBF kernels from expression data

Measurements (for each gene): vector of expression values under
different experimental conditions
“classical” RBF kernel k(x1, x2) = exp(−σ∥x1 − x2∥2)
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Diffusion kernels from interaction-graphs

A: Adjacency matrix, D: node degrees, L = D − A.
K := 1

Z(β) exp(−βL) with transition probabilities β.
Physical interpretation (random walk):
randomly choose next node among neighbors.
Self-transition occurs with prob. 1 − diβ

Kij : prob. for walk from i to j .
(Kondor and Lafferty, 2002)
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Alignment kernels from sequences

Alignment with Pair HMMs
⇝ Mercer kernel (Watkins, 2000).
Image source: Durbin, Eddy, Krogh, Mitchison. Biological Se-

quence Alignment. Cambridge.
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Combination of heterogeneous data
Adding kernels ⇒ new kernel:
k1(x , y) = ϕ1(x) · ϕ1(y),
k2(x , y) = ϕ2(x) · ϕ2(y) ⇒ k ′ = k1 + k2 =

(ϕ1(x)
ϕ2(x)

)
·
(ϕ1(y)

ϕ2(y)
)

Fusion & relevance determination: kernel-combinations

= 1 ++ 2 3 + 4K K K K K1 2 3 4ccc c
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