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Chapter 8: Gaussian Processes

The use of the Gaussian distribution in ML
▶ Properties of the multivariate Gaussian distribution
▶ Random variables → random vectors → stochastic processes
▶ Gaussian processes for regression
▶ Model Selection
▶ Gaussian processes for classification

Relation to kernel models (e.g. SVMs)
Relation to neural networks.
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Kernel Ridge Regression

Kernelized ridge regression: ŵ = (X tX + λI)−1X ty .
Matrix inversion lemma: (I + UV )−1U = U(I + VU)−1

Define new variables αi :
ŵ = (X tX + λI)−1X ty

= X t(XX t + λI)−1y︸ ︷︷ ︸
α̂

=
n∑

i=1
α̂ix i .

Predictions for new x∗:

f̂ (x∗) = ŵ tx∗ =
n∑

i=1
α̂ixt

i x∗ =
n∑

i=1
α̂ik(x i , x∗).
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Kernel Ridge Regression
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How can we make use of the Gaussian distribution?
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Is it possible to fit a nonlinear regression line with the “boring”
Gaussian distribution?
Yes, but we need to introduce the concept of Gaussian Processes!
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The 2D Gaussian distribution

2D Gaussian: P(y ; µ = 0, Σ = K ) = 1√
2π|K |

exp(−1
2y tK−1y)

Covariance
(also written “co-variance”)
is a measure of how much two
random variables vary to-
gether:

+1: perfect linear
coherence,
-1: perfect negative
linear coherence,
0: no linear coherence.
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Properties of the Multivariate Gaussian distribution

y ∼ N (µ, K ). Let y =
(

y1
y2

)
and K =

(
K11 K12
K21 K22

)
.

Then y1 ∼ N (µ1, K11) and y2 ∼ N (µ2, K22).
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Marginals of Gaussians are again Gaussian!
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Properties of the Multivariate Gaussian distribution (2)

y ∼ N (µ, K ). Let y =
(

y1
y2

)
and K =

(
K11 K12
K21 K22

)
.

Then y2|y1 ∼ N (µ2 + K21K−1
11 (y1 − µ1), K22 − K21K−1

11 K12).
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Conditionals of Gaussians are again Gaussian!
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2D Gaussians: a new visualization

top left: mean and
±std.dev. of p(y2|y1 = 1).

bottom left: p(y2|y1 = 1)
and samples drawn from it.

top right: x -axis: indices
(1, 2) of dimensions,
y -axis: density in each
component. Shown are
y1 = 1 and the conditional
mean p̄(y2|y1 = 1) and
std.dev.

bottom right: samples
drawn from above model.
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Visualizing high-dimensional Gaussians

top left: 6 samples drawn
from 5-dimensional
Gaussian with zero mean
(indicated by blue line).
σ = 1 (magenta line).

bottom left: Conditional
mean and std.dev of
p(y4, y5|y1 = −1, y2 = 0, y3 = 0.5).

top right: contour lines of
p(y4, y5|y1 = −1, y2 = 0, y3 = 0.5).

bottom right: samples
drawn from above model.
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From covariance matrices to Gaussian processes

top left: 8 samples, 6 dim.
x -axis: dimension-indices.

bottom left: 8 samples,
viewed as values y = f (x).
Construction: choose 6
input points x i at random
⇝ build covariance matrix K
with covariance function
k(x, x ′) = exp(− 1

2l2 ∥x −x ′∥2)
⇝ draw f ∼ N (0, K )
⇝ plot as function of inputs.

top right: same for 12 inputs

bottom right: 100 inputs
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This looks similar to Kernel Regression...
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Gaussian Processes

Gaussian Random Variable (RV): f ∼ N (µ, σ2).
Gaussian Random Vector: Collection of n RVs, characterized by
mean vector and covariance matrix: f ∼ N (µ, Σ)
Gaussian Process: infinite Gaussian random vector, every finite
subset of which is jointly Gaussian distributed
Continuous index, e.g. time t ⇝ function f (t).
Fully specified by mean function m(t) = E[f (t)]
and covariance function k(t, t ′) = E[(f (t) − m(t))(f (t ′) − m(t ′))].
In ML, we will focus on more general index sets x ∈ Rd with mean
function m(x) and covariance function k(x, x ′):

f (x) ∼ GP(m(x), k(x, x ′)).
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Visualizing Gaussian Processes: Sampling

Problem: working with infinite vectors and covariance matrices is not
very intuitive...
Solution: evaluate the GP at set of n discrete times
(or input vectors x ∈ Rd):

▶ Choose n input points x i at random ⇝ matrix X
▶ build covariance matrix K (X , X ) with covariance function k(x i , x j)
▶ sample realizations of the Gaussian random vector

f ∼ N (0, K (X , X ))
▶ plot f as function of inputs.
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This is exactly what we have done here...
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From the Prior to the Posterior
GP defines distribution over functions ⇝ f evaluated at training points X
and f ∗ evaluated at test points X∗ are jointly Gaussian:[

f
f ∗

]
∼ N

(
0,

[
K (X , X ) K (X , X∗)
K (X∗, X ) K (X∗, X∗)

])
Posterior p(f ∗|X∗, X , f (X )): conditional of a Gaussian distribution.

Let x ∼ N (µ, K ). Let x =
(

x1
x2

)
and K =

(
K11 K12
K21 K22

)
.

Then x2|x1 ∼ N (µ2 + K21K−1
11 (f 1 − µ1), K22 − K21K−1

11 K12).

f ∗|X∗, X , f ∼ N ( K (X∗, X )(K (X , X ))−1f ,

K (X∗, X∗) − K (X∗, X )(K (X , X ))−1K (X , X∗))

For only one test case:

f∗|x∗, X , f ∼ N (kt
∗K−1f , k∗∗ − kt

∗K−1k∗)
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A simple extension: noisy observations

Assume we have access only to noisy versions of function values:
y = f (x) + η, η ∼ N (0, σ2) (cf. initial example of ridge regression).
Noise η does not depend on data!
Covariance of noisy observations y is sum of covariance of f and
variance of noise: cov(y) = K (X , X ) + σ2I.[

y
f ∗

]
∼ N

(
0,

[
K (X , X ) + σ2I K (X , X∗)

K (X∗, X ) K (X∗, X∗)

])

f ∗|X∗, X , y ∼ N ( K (X∗, X )(K (X , X ) + σ2I)−1y ,

K (X∗, X∗) −K (X∗, X )(K (X , X ) + σ2I)−1K (X , X∗))

f∗|x∗, X , y ∼ N (kt
∗(K + σ2I)−1y , k∗∗ − kt

∗(K + σ2I)−1k∗)

⇒ Posterior mean is solution of kernel ridge regression!
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Noisy observations: examples
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Noisy observations: y = f (x) + η, η ∼ N (0, σ2)
Mean predictions: f̂ ∗ = K∗(K + σ2I)−1y .
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Gaussian processes for regression
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Left: 11 training points generated as y = sin(x)/x + ν, ν ∼ N (0, 0.01)
Covariance k(xp, xq) = exp(− 1

2l2 ∥xp − xq∥2) + σ2δp,q.
100 test points uniformly chosen from [−10, 10] ⇝ matrix X∗.
Mean prediction E [f ∗|X∗, X , y ] and ±std.dev.

Middle: samples drawn from posterior f ∗|X∗, X , y .

Right: samples drawn from prior f ∼ N (0, K (X , X )).

Volker Roth (University of Basel) Machine Learning 19 / 35



Covariance Functions

A GP specifies a distribution over functions f (x), characterized by
mean function m(x) and covariance function k(x i , x j).
Finite subset evaluated at n inputs ⇝ Gaussian distribution:

f (X ) = (f (x1), . . . , f (xn))t ∼ N (µ, K ),
where K is the covariance matrix with entries Kij = k(x i , x j).
Covariance matrices are symmetric positive semi-definite:

Kij = Kji and xtKx ≥ 0, ∀x.

We already know that Mercer kernels have this property
⇝ all Mercer kernels define proper covariance functions in GPs.
Kernels frequently have additional parameters.
The noise variance in the observation model
y = f (x) + η, η ∼ N (0, σ2) is another parameter.
How should we choose these parameters? ⇝ model selection.
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Model Selection

top left: sample function from
prior f ∼ N (0, K (X , X )) with
covariance function
k(x, x ′) = exp(− 1

2l2 ∥x − x ′∥2).
Length scale l = 10−0.5 small
⇝ highly varying function.

bottom left: same for l = 100

⇝ smoother function

top right: same for l = 100.5

⇝ even smoother...

bottom right: almost linear
function for l = 101.
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Model Selection (2)

How to select the parameters?
One possibility: maximize marginal likelihood:

p(y |X ) =
∫

p(y |f , X )p(f |X ) df .

We do not need to integrate: we know that
f |X ∼ N (0, K ) and y = f + η, η ∼ N (0, σ2).

Since η does not depend on X , the variances simply add:
y |X ∼ N (0, K + σ2I).

Possible strategy:
Select parameters on a grid and choose maximum.
Or: Compute derivatives of marginal likelihood and use gradient
descent.

Volker Roth (University of Basel) Machine Learning 22 / 35



Model Selection (3)

Example problem: y = sin(x)/x + η, η ∼ N (0, 0.01).
Log marg. likeli. = log N (0, K + σ2I) =

−1
2y t(K + σ2I)−1y︸ ︷︷ ︸

data fit

− 1
2 log |K + σ2I|︸ ︷︷ ︸
complexity penalty

− n
2 log(2π)︸ ︷︷ ︸

norm. constant

.

2d-Example with Gaussian RBF:

(K + σ2I) =
(

1 + σ2 a
a 1 + σ2

)
⇒ |K + σ2I| = (1 + σ2)2 − a2 > 0

Note that a → 0 if length scale l → 0
⇝ complexity penalty has high values for small length scales.
Matrix inverse includes a dominating factor |K + σ2I|−1

⇝ data fit term also high for small l .
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Model Selection (4)
Fixing σ2 = 0.01 and varying length scale l :
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Model Selection (5)
Fixing length scale l = 0.5 and varying the noise level σ2:
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Model Selection (6)
Varying both σ2 and l :
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Classification: Basket Ball Example

0 10 20 30 40

−
0.

5
0.

0
0.

5
1.

0
1.

5

distance

hi
t (

1)
 o

r 
m

is
s 

(0
)

logistic transfer function

linear activation

Adapted from Fig. 7.5.1 in B. Flury: A first course in multivariate statistics. Springer 1997.
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Classical Logistic Regression

Targets y ∈ {0, 1}
⇝ Bernoulli RV with “success probability” π(x) = P(1|x).
Likelihood: P(y |X , f ) =

∏n
i=1 (πf (x i))yi (1 − πf (x i))1−yi

Linear logistic regression: unbounded f (x) = w tx (“activation”)
Bounded estimates: pass f (x) through logistic transfer function
σ(f (x)) = ef (x)

1+ef (x) = 1
1+e−f (x) and set πf (x) = σ(f (x)).

Use gradient-based methods for finding ŵ that maximizes the log
posterior.
Kernel trick: expand w = X tα, substitute dot products by kernel
function k(x, x ′) ⇝ kernel logistic regression.
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GP Classification

Place GP prior over “latent” function f (x) ∼ GP(0, k(x, x ′)).
“Squash” it through logistic function ⇝ prior on π(x) = σ(f (x)).

(Rasmussen & Williams, 2006)

Problem: Bernoulli likelihood ⇝ predictive distribution
p(y∗ = 1|X , y , x∗) cannot be calculated analytically.
Possible solution: use Laplace approximation.
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GP Classification using Laplace’s approximation
Prior f |X ∼ N (0, K ). Bernoulli likelihood:

p(y |X , f ) =
n∏

i=1
(σ(f (x i)))yi (1 − σ(f (x i)))1−yi .

Gaussian approximation of posterior:
p(f |X , y) ≈ N (f̂ , H−1).

Predictions: compute
p(y∗ = 1|y , x∗, X ) =

∫
σ(f∗)p (f∗ | y , x∗, X )︸ ︷︷ ︸

latent function at x∗

df∗ = Ep(f∗|y ,x∗,X)(σ).

...
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GP Classification using Laplace’s approximation

First predict latent function at test case x∗:

p(f∗|y , x∗, X ) =
∫

p(f∗|f , x∗, X )︸ ︷︷ ︸
Gaussian

p(f |X , y)df︸ ︷︷ ︸
approx. Gaussian N (f̂ , H−1)

≈ N (µ∗, σ∗), with
µ∗ = kt

∗K−1f̂ ,

σ∗ = k∗∗ − kt
∗K̃−1k∗

Then use Monte Carlo approximation

p(y∗|y , x∗, X ) = Ep(f∗|y ,x∗,X)(σ) ≈ 1
S

S∑
s=1

σ(f s
∗ (x∗)),

where f s
∗ are samples from the (approximated) distribution over latent

function values.
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GPs and Neural networks

Consider a neural network with one hidden layer
of nH units:

f (x) = b +
nH∑
j=1

vjg(x; uj).
x

x

Σ

1

2

1
x

2
211

1

1
1

v g

x
u 

 

u 
 b

1g
t

(u x)

Bayesian treatment: All weights are considered as RVs for which
we define prior distributions: zero-mean Gaussian priors for b and v ,
and for components of the weight vector uj at the j-th hidden unit.
What is the asymptotic distribution of f (x), as nH → ∞?
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GPs and Neural networks
NN-GP kernel (Neal 1996, Williams 1998)
A MLP with one hidden layer of infinite width, which has Gaussian priors
on all parameters, converges to a Gaussian process with a well-defined
covariance function (extensions to deep MLPs, CNNs etc. exist).

Network with nH hidden units implements function
f (x) = b +

∑nH
j=1 vjg(x; uj), g(x; uj) = φ(uj0 + xtuj).

Priors: b ∼ N(0, σ2
b), vj ∼ N(0, σ2

v ), uji ∼ N(0, σ2
uji )

Let θ = {b, vj , uj} be all the parameters.
Mean of network output:

Eθ[f (x)] =
=0︷ ︸︸ ︷

Eθ[b] +
nH∑
j=1

Eθ[vjg(x; uj)]

(v indep. of u)=
nH∑
j=1

Eθ[vj ]︸ ︷︷ ︸
=0

Eu[g(x; uj)] = 0.
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GPs and Neural networks: Covariance
Covariance when the function is applied to two inputs:

Eθ[f (x)f (x ′)] =Eθ[(b +
nH∑
j=1

vjg(x))(b +
nH∑
j=1

vjg(x ′))]

=σ2
b +

nH∑
j=1

Eθ[v2
j ] Eu[g(x; uj)g(x ′; uj)]

= σ2
b + σ2

v nH Eu[g(x; u)g(x ′; u)],

because all of the hidden units are identically distributed.
Let nH → ∞. Scale magnitude of output by defining σ2

v = ω
nH

.
Input to the output neuron is an infinite sum over i.i.d. RVs.
⇝ central limit theorem ⇝ for a single input x: Gaussian
distribution f (x) ∼ N(0, σ2

b + ωEu[g(x)2])
Collection of n inputs x i ⇝ joint distribution: multivariate zero-mean
Gaussian with covariance σ2

b + ωEu[g(x)g(x ′)] := kNN-GP(x, x ′).
For some activations φ, NN-GP kernel can be computed analytically.
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Summary

GPs: fully probabilistic models
⇝ posterior p(f ∗|X , y , x∗).
Uniquely defined by specifying covariance function.
Mathematically simple:
we only need to calculate conditionals of Gaussians!
Connections:
regression: MAP(GPr ) = kernel ridge reg.
GPc ≈ probabilistic version of SVM.

Networks of infinite width can be interpreted as
Gaussian Processes with the NN-GP kernel.
It is also possible to derive kernels from networks after training:
Neural Tangent Kernel.
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