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Chapter 10: Linear latent variable models
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Figure 12.1 in K. Murphy: Machine Learning. MIT Press 2012.
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Factor analysis
20

@ One problem with mixture models: only a
single latent variable. Each observation can

Ko
only come from one of K prototypes. HO\ Hzi
o Alternative: z; € R¥. Gaussian prior: TO\E I

p(27) = N (zil 120, To) vO—

X
N

o For observations x; € RP , we may use a Gaussian likelihood.
@ As in linear regression, we assume the mean is a linear function:
p(xilzi,0) = N(Wz; 4 p, V),
W: factor loading matrix, and W: covariance matrix.

o We take W to be diagonal, since the whole point of the model is to
“force” z; to explain the correlation.
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Factor analysis: generative process

Generative process (k = 1, p = 2, diagonal V):

p(z) p(x)

Figure 12.1 in K. Murphy: Machine Learning. MIT Press 2012.

We take an isotropic Gaussian “spray can” and slide it along the 1d line
defined by wz; 4+ p. This induces a correlated Gaussian in 2d.
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FA is a low rank parameterization of an MVN

@ The induced marginal distribution p(x;|@) is Gaussian:
p(x;]@) = /N(Xi, Wz; + l'l'?w)N(zi‘lj’OaZO) dz;,

= N(xi|Wpg + p, ¥+ WEZoWH)
o We can set py = 0 without loss of generality (absorb W into ).

Similarly, we can set 9 = [/ using W = WZal/z.

Covariance structure:
cov[x|0] = (WEy V) To(WEy /2 + W = WW! + v,

@ We thus see that FA approximates the covariance matrix of x using a
low-rank decomposition:

C := cov[x] = WW*' + V.

Only O(p - k) parameters ~~ compromise between full covariance with
O(p?) params, and a diagonal covariance O(p) params.
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Inference of the latent factors

@ We hope that the latent factors z will reveal something interesting
about the data ~~» compute posterior over the latent variables:

p(Z,"X,',B) = N(z;|m;,Z)
Yy = (I+wivtw)!
m;, = TW'Wlx
@ The posterior means m; are called the
latent scores, or latent factors.
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Example

o Example from (Shalizi 2009). p = 11 variables and n = 387 cases
describing aspects of cars: engine size, #(cylinders), miles per gallon
(MPG), price, etc.

o Fit a p =2 dim model. Plot m; scores as points in R?.

@ To get a better understanding of the “meaning” of the latent factors,
project unit vectors e; = (1,0,...,0),e2 = (0,1,0,...,0), etc. into
the low dimensional space (blue lines)

@ Horizontal axis represents price, corresponding to the features labeled
“dealer” and “retail”, with expensive cars on the right. Vertical axis
represents fuel efficiency (measured in terms of MPG) versus size:
heavy vehicles are less efficient and are higher up, whereas light
vehicles are more efficient and are lower down.

o Verify by finding the closest exemplars in the training set.
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Example
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Figure 12.2 in K. Murphy: Machine Learning. MIT Press 2012.
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Special Cases: PCA and CCA

o Covariance matrix W = o2/ ~ (probabilistic) PCA.

@ Two-view version involving x and y ~~ CCA.

Wx Wy

B, \

From figure 12.19 in K. Murphy: Machine Learning. MIT Press 2012.

Volker Roth (University of Basel) 9/28



PCA and dimensionality reduction

Given n data points in p dimensions:

X = _ € R"™P

— xn —

Want to reduce dimensionality from p to k. Choose k directions
w1, ..., Wy, arrange them as columns in matrix W':

W:[wl wy ... wk}eRpXk

For each wj, compute similarity z; = wix, j=1... k.
Project x down to z = (z1,...,2zx)" = W'x. How to choose W?
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Encoding—decoding model

The projection matrix W serves two functions:
o Encode: z = W'x, zeRX, z =wjx.
» The vectors w; form a basis of the projected space.
» We will require that this basis is orthonormal, i.e. WtW = /.
15 — _ Nk %
o Decode: X = Wz =3 i, zw;, xcRP.
» If k = p, the above orthonormality condition implies Wt = W1,
and encoding can be undone without loss of information.
> If k < p, we use the pseudo-inverse
~> the reconstruction error will be nonzero.
@ Above we assumed that the origin of the coordinate system is in the
sample mean, i.e. }°; x; = 0.
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Principal Component Analysis (PCA)

In the general case, we want the reconstruction error || x — X|| to be small.
Objective: minimize minycpoxk. wew—; >oreq | xi — WWtx;||?
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Finding the principal components

Projection vectors are orthogonal ~~ can treat them separately:

min 27—1 |x; — wwix;|?

w: ||w|=1
n
Z, [x; — wwix;||> = Z[xfx; —2xiww'x; + xiww'ww'x|]
! i=1 -1

= Zi[xfx,- — xiww'x;]

n
= E xixp—w! E XiXjw
]
i=1

= E xixi— wiX Xw.
I

N———
const.
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Finding the principal components

e Want to maximize w*X*Xw under the constraint ||w| =1

wiX Xw

e Can also maximize the ratio J(w) = *-2-=

and rescale w.

o Optimal projection u is the eigenvector of Xt X with largest
eigenvalue (J is a Rayleigh quotient).

@ Note that we assumed that > ; x; = 0. Thus, the columns of X are
assumed to sum to zero.
~> compute SVD of “centered” matrix X
~ column vectors in W are eigenvectors of XtX
~> they are the principal components.
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Eigen-faces [Turk and Pentland, 1991]

@ p = number of pixels
o Each x; € RP is a face image
@ xji = intensity of the j-th pixel in image i
(Xt)pxn ~ Wk (Zt)kxn
| |
~ -— . ™ z1 ... Z

Idea: z; more 'meaningful’ representation of i-th face than x;
Can use z; for nearest-neighbor classification
Much faster when p > k.
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Probabilistic PCA

HZOO\ Zi
‘P=G2IO\

W(O— X;

N

o Assuming VU = o2/ and centered data in the FA model
~> likelihood and marginal likelihood

p(xilzi,0) = N(Wz;,d?l),
p(xi|0) = / N(xi, Wzi, 2N (2i]0, 1) dzi,
= N(x0,5% + WW?)
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Probabilistic PCA

o (Tipping & Bishop 1999): Maxima of the marg. likelihood given by
W = V(A - 620)2R,
where R is an arbitrary orthogonal matrix,

columns of V: first k eigenvectors of S = %XtX,

A: diagonal matrix of eigenvalues.
o As 02 — 0, we have W — V, as in classical PCA (for R = /\_%).
@ Projections z;: Posterior over the latent factors:

p(zi|xi,0) = N(zi|i;,o?F1)
Fo— oI+ W
m; = F-1 V\A/tx,-

For 02 — 0, z; — m; and m; — Vtx; ~ orthogonal projection of the
data onto the column space of V, as in classical PCA.
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Multiple Views: CCA

@ Consider paired samples from different views.
@ What is the dependency structure between the views 7

@ Standard approach: global linear dependency detected by CCA.
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Canonical Correlation Analysis [Hotelling, 1936]

Often, each data point consists of two views:
@ Image retrieval: for each image, have the following:
» X: Pixels (or other visual features) Y: Text around the image
o Time series:

» X: Signal at time t
» Y: Signal at time t + 1

@ Two-view learning: divide features into two sets

» X: Features of a word/object, etc.
» Y': Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly.
Find projections such that projected views are maximally correlated.
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CCA vs PCA

separate PCA separate PCA

&

CCA
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CCA vs PCA
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CCA: Setting

@ Let X be a random vector € RP< and Y be a random vector € RPy
Consider the combined (p := px + py)-dimensional random vector
Z = (X,Y) Letits (p x p) covariance matrix be partitioned into
blocks according to:

- ZXX € RPxXPx | ZXY c RPxXPy

o Zyx € RPy*Px ’ Zyy € RPy*py

@ Assuming centered data, the blocks in the covariance matrix can be
estimated from observed data sets X € R"*Px Y ¢ R"Py:

[xfx y XtY]

1
Z=Llvex | vty

n
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CCA: Setting

covariance(x,y)
standard deviation(x)- standard deviation(y)

o Correlation(x,y) =

cov(x, y)
p=cor(x,y) = ————.
a(x)o(y)
@ Sample correlation:
Zi(Xf - )_() ()/i - }_/)t centered cgservations xty

=R - 7P Vxix Ty

Want to find maximally correlated 1D-projections x*a and y'b.

. . Zero means
Projected covariance: cov(x'a,y'b) ™ = a'Xxyb.

1 1
o Define c =Yjya d=1X3b.

_1

_1
CthX2 ZXYzYYQ d

VcteVdtd

Thus, the projected correlation coefficient is: p =
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CCA: Setting

o By the Cauchy-Schwarz inequality (x'y < ||x] - ||y]|), we have

2
_1 _1 _1 _1 1
Tt Ty Tye | d < | e Ty T T Taic | (d'd)?,
—_———
H G:=HH?
1
f 2
p= (eGe)® GC)1
(cte)?

, c'Gc
P =

)

ctc '

o Equality: vectors d and Z_§ZYXZ;)%<C are collinear.

° MaX|mum C is the elgenvector with the maximum eigenvalue of
G = T Txy Tyh Ivx k.

Subsequent pairs ~ using eigenvalues of decreasing magnitudes.
1

~1 ~1

o Collinearity: d oc Xy X yx¥yxC
_1 ~1

@ Transform back to original variables a = ¥ ,3c, b=1%,yd.
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Pixels That Sound [Kidron, Schechner, Elad, 2005]

“People and animals fuse auditory and visual information to obtain robust
perception. A particular benefit of such cross-modal analysis is the ability
to localize visual events associated with sound sources. We aim to achieve
this using computer-vision aided by a single microphone”.

https://webee.technion.ac.il/ yoav/research/pixels-that-sound.html
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Probabilistic CCA
(Bach and Jordan 2005): With Gaussian priors

p(z) = N(2°(0, )N'(z¥|0, HN (2710, 1),

the MLE in the two-view FA model is equivalent to classical CCA
(up to rotation and scaling).

Wx Wl/

z

~

B, | T v NJ B,

From figure 12.19 in K. Murphy: Machine Learning. MIT Press 2012.
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Probabilistic CCA: Essential Model Structure

Shared z° decorrelates the two views (x, y):

Vs

iy

S
]

~
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Further connections

o If y is a discrete class label ~~ CCA is (essentially) equivalent to
Linear Discriminant Analysis (LDA), see (Hastie et al. 1994).
o Arbitrary y ~~ CCA is (essentially) equivalent to the
Gaussian Information Bottleneck (Chechik et al. 2005)
» Basic idea: compress x into compact latent representation while
preserving information about y.
> Information theoretic motivation:
Find encoding distribution p(z|x) by minimizing
I(x;2) — Bl(z:y)
where 3 > 0 is some parameter controlling the trade-off between
compression and predictive accuracy.

o Arbitrary y, discrete shared latent z°
~» dependency-seeking clustering (Klami and Kaski 2008): find
clusters that “explain” the dependency between the two views.
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