Machine Learning

Volker Roth

Department of Mathematics & Computer Science University of Basel

Э

Chapter 10: Linear latent variable models

Figure 12.1 in K. Murphy: Machine Learning. MIT Press 2012.

Factor analysis

- One problem with mixture models: only a single latent variable. Each observation can only come from one of K prototypes.
- Alternative: $z_i \in \mathbb{R}^k$. Gaussian prior:

 $p(\boldsymbol{z}_i) = \mathcal{N}(\boldsymbol{z}_i | \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$

<ロト <部ト <注ト <注ト = 正

- For observations $x_i \in \mathbb{R}^p$, we may use a **Gaussian likelihood.**
- As in linear regression, we assume the mean is a **linear** function: $p(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta}) = \mathcal{N}(W \mathbf{z}_i + \boldsymbol{\mu}, \Psi),$

W: factor loading matrix, and Ψ : covariance matrix.

• We take Ψ to be **diagonal**, since the whole point of the model is to "force" z_i to **explain the correlation.**

Factor analysis: generative process

Generative process (k = 1, p = 2, diagonal Ψ):

Figure 12.1 in K. Murphy: Machine Learning. MIT Press 2012.

We take an isotropic Gaussian "spray can" and slide it along the 1d line defined by $wz_i + \mu$. This induces a correlated Gaussian in 2d.

FA is a low rank parameterization of an MVN

• The induced marginal distribution $p(\mathbf{x}_i|\boldsymbol{\theta})$ is Gaussian:

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \int \mathcal{N}(\mathbf{x}_i, W \mathbf{z}_i + \boldsymbol{\mu}, \Psi) \mathcal{N}(\mathbf{z}_i|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) d\mathbf{z}_i,$$

= $\mathcal{N}(\mathbf{x}_i|W \boldsymbol{\mu}_0 + \boldsymbol{\mu}, \Psi + W \boldsymbol{\Sigma}_0 W^t)$

• We can set $\mu_0 = \mathbf{0}$ without loss of generality (absorb $W\mu_0$ into μ). Similarly, we can set $\Sigma_0 = I$ using $\tilde{W} = W\Sigma_0^{-1/2}$. Covariance structure:

$$cov[\boldsymbol{x}|\boldsymbol{\theta}] = (W\Sigma_0^{-1/2})\Sigma_0(W\Sigma_0^{-1/2})^t + \Psi = WW^t + \Psi.$$

• We thus see that FA approximates the covariance matrix of *x* using a low-rank decomposition:

$$C := cov[\mathbf{x}] = WW^t + \Psi.$$

Only $O(p \cdot k)$ parameters \rightsquigarrow compromise between full covariance with $O(p^2)$ params, and a diagonal covariance O(p) params.

Inference of the latent factors

 We hope that the latent factors z will reveal something interesting about the data → compute posterior over the latent variables:

$$p(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{z}_i | \mathbf{m}_i, \boldsymbol{\Sigma})$$

$$\boldsymbol{\Sigma} = (I + W^t \Psi^{-1} W)^{-1}$$

$$\mathbf{m}_i = \boldsymbol{\Sigma} W^t \Psi^{-1} \mathbf{x}_i$$

• The posterior means *m_i* are called the latent scores, or latent factors.

Example

- Example from (Shalizi 2009). p = 11 variables and n = 387 cases describing aspects of cars: engine size, #(cylinders), miles per gallon (MPG), price, etc.
- Fit a p = 2 dim model. Plot m_i scores as points in \mathbb{R}^2 .
- To get a better understanding of the "meaning" of the latent factors, project unit vectors $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0)$, etc. into the low dimensional space (blue lines)
- Horizontal axis represents price, corresponding to the features labeled "dealer" and "retail", with expensive cars on the right. Vertical axis represents fuel efficiency (measured in terms of MPG) versus size: heavy vehicles are less efficient and are higher up, whereas light vehicles are more efficient and are lower down.
- Verify by finding the closest exemplars in the training set.

Example

Figure 12.2 in K. Murphy: Machine Learning. MIT Press 2012.

< ロ > < 同 > < 回 > < 回 >

Special Cases: PCA and CCA

- Covariance matrix $\Psi = \sigma^2 I \rightsquigarrow$ (probabilistic) **PCA**.
- Two-view version involving x and $y \rightsquigarrow CCA$.

From figure 12.19 in K. Murphy: Machine Learning. MIT Press 2012.

PCA and dimensionality reduction

Given n data points in p dimensions:

$$X = \begin{bmatrix} - & \mathbf{x}_1 & - \\ - & \mathbf{x}_2 & - \\ - & \vdots & - \\ - & \mathbf{x}_n & - \end{bmatrix} \in \mathbb{R}^{n \times p}$$

Want to reduce dimensionality from p to k. Choose k directions w_1, \ldots, w_k , arrange them as columns in matrix W:

$$W = \begin{bmatrix} w_1 & w_2 & \dots & w_k \end{bmatrix} \in \mathbb{R}^{p \times k}$$

For each \boldsymbol{w}_j , compute **similarity** $z_j = \boldsymbol{w}_j^t \boldsymbol{x}, \ j = 1 \dots k$. Project \boldsymbol{x} down to $\boldsymbol{z} = (z_1, \dots, z_k)^t = W^t \boldsymbol{x}$. How to choose W?

Encoding-decoding model

The projection matrix W serves two functions:

- Encode: $\boldsymbol{z} = W^t \boldsymbol{x}, \ \boldsymbol{z} \in \mathbb{R}^k, \ \boldsymbol{z}_j = \boldsymbol{w}_j^t \boldsymbol{x}.$
 - The vectors \boldsymbol{w}_j form a basis of the projected space.
 - We will require that this basis is orthonormal, i.e. $W^t W = I$.

• **Decode:**
$$\tilde{\mathbf{x}} = W\mathbf{z} = \sum_{j=1}^{k} z_j \mathbf{w}_j, \ \tilde{\mathbf{x}} \in \mathbb{R}^p.$$

- If k = p, the above orthonormality condition implies W^t = W⁻¹, and encoding can be undone without loss of information.
- Above we assumed that the origin of the coordinate system is in the sample mean, i.e. $\sum_{i} \mathbf{x}_{i} = 0$.

Principal Component Analysis (PCA)

In the general case, we want the reconstruction error $\|\mathbf{x} - \tilde{\mathbf{x}}\|$ to be small. Objective: minimize $\min_{W \in \mathbb{R}^{p \times k}: W^t W = I} \sum_{i=1}^{n} \|\mathbf{x}_i - WW^t \mathbf{x}_i\|^2$

Finding the principal components

Projection vectors are orthogonal \rightsquigarrow can treat them separately:

$$\min_{\boldsymbol{w}: \|\boldsymbol{w}\|=1} \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}\|^{2}$$

$$\sum_{i} \|\boldsymbol{x}_{i} - \boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}\|^{2} = \sum_{i=1}^{n} [\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - 2\boldsymbol{x}_{i}^{t}\boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i} + \boldsymbol{x}_{i}^{t}\boldsymbol{w}\underbrace{\boldsymbol{w}^{t}\boldsymbol{w}^{t}\boldsymbol{w}^{t}\boldsymbol{w}^{t}}_{=1}]$$

$$= \sum_{i} [\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{t}\boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}]$$

$$= \sum_{i} \boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{w}^{t}\sum_{i=1}^{n} \boldsymbol{x}_{i}\boldsymbol{x}_{i}^{t}\boldsymbol{w}$$

$$= \sum_{i} \boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{w}^{t}\boldsymbol{X}^{t}\boldsymbol{X}\boldsymbol{w}.$$
const.

Finding the principal components

- Want to maximize $\boldsymbol{w}^t X^t X \boldsymbol{w}$ under the constraint $\|\boldsymbol{w}\| = 1$
- Can also maximize the ratio $J(w) = \frac{w^t X^t X w}{w^t w}$ and rescale \hat{w} .
- Optimal projection *u* is the eigenvector of *X^tX* with largest eigenvalue (*J* is a Rayleigh quotient).
- Note that we assumed that $\sum_{i} x_{i} = 0$. Thus, the columns of X are assumed to sum to zero.
 - \rightsquigarrow compute SVD of "centered" matrix X
 - \rightsquigarrow column vectors in W are eigenvectors of $X^t X$
 - \rightsquigarrow they are the principal components.

Eigen-faces [Turk and Pentland, 1991]

- *p* = number of pixels
- Each $\boldsymbol{x}_i \in \mathbb{R}^p$ is a face image
- x_{ji} = intensity of the *j*-th pixel in image *i* $(X^t)_{p \times n} \approx W_{p \times k}$

Idea: z_i more 'meaningful' representation of *i*-th face than x_i Can use z_i for nearest-neighbor classification Much faster when $p \gg k$.

 $(Z^t)_{k \times n}$

Probabilistic PCA

• Assuming $\Psi = \sigma^2 I$ and centered data in the FA model \rightsquigarrow likelihood and marginal likelihood

$$p(\mathbf{x}_i | \mathbf{z}_i, \boldsymbol{\theta}) = \mathcal{N}(W \mathbf{z}_i, \sigma^2 \mathbf{I}),$$

$$p(\mathbf{x}_i | \boldsymbol{\theta}) = \int \mathcal{N}(\mathbf{x}_i, W \mathbf{z}_i, \sigma^2 \mathbf{I}) \mathcal{N}(\mathbf{z}_i | \mathbf{0}, \mathbf{I}) d\mathbf{z}_i,$$

$$= \mathcal{N}(\mathbf{x}_i | \mathbf{0}, \sigma^2 \mathbf{I} + W W^t)$$

イロト イヨト イヨト

Probabilistic PCA

• (Tipping & Bishop 1999): Maxima of the marg. likelihood given by $\hat{W} = V(\Lambda - \sigma^2 I)^{\frac{1}{2}}R,$

where *R* is an arbitrary orthogonal matrix, columns of *V*: first *k* eigenvectors of $S = \frac{1}{n}X^{t}X$, Λ : diagonal matrix of eigenvalues.

• As
$$\sigma^2 \to 0$$
, we have $\hat{W} \to V$, as in classical PCA (for $R = \Lambda^{-\frac{1}{2}}$).

• Projections z_i : Posterior over the latent factors:

$$p(\mathbf{z}_i | \mathbf{x}_i, \hat{\boldsymbol{\theta}}) = \mathcal{N}(\mathbf{z}_i | \hat{\boldsymbol{m}}_i, \sigma^2 \hat{F}^{-1})$$
$$\hat{F} = \sigma^2 I + \hat{\mathcal{W}}^t \hat{\mathcal{W}}$$
$$\boldsymbol{m}_i = \hat{F}^{-1} \hat{\mathcal{W}}^t \mathbf{x}_i$$

For $\sigma^2 \rightarrow 0$, $z_i \rightarrow m_i$ and $m_i \rightarrow V^t x_i \rightsquigarrow$ orthogonal projection of the data onto the column space of V, as in classical PCA.

Multiple Views: CCA

- Consider paired samples from different views.
- What is the dependency structure between the views ?
- Standard approach: global linear dependency detected by CCA.

Canonical Correlation Analysis [Hotelling, 1936]

Often, each data point consists of two views:

- Image retrieval: for each image, have the following:
 - ▶ X: Pixels (or other visual features) Y: Text around the image
- Time series:
 - X: Signal at time t
 - Y: Signal at time t + 1
- Two-view learning: divide features into two sets
 - ► X: Features of a word/object, etc.
 - Y: Features of the context in which it appears
- Goal: reduce the dimensionality of the two views jointly.

Find projections such that projected views are maximally correlated.

・ 同 ト ・ ヨ ト ・ ヨ ト

CCA vs PCA

æ

<ロト <回ト < 回ト < 回ト

CCA vs PCA

CCA: Setting

 Let X be a random vector ∈ ℝ^{p_x} and Y be a random vector ∈ ℝ^{p_y} Consider the combined (p := p_x + p_y)-dimensional random vector Z = (X, Y)^t. Let its (p × p) covariance matrix be partitioned into blocks according to:

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{\Sigma}_{XX} \in \mathbb{R}^{p_X \times p_X} & | & \boldsymbol{\Sigma}_{XY} \in \mathbb{R}^{p_X \times p_y} \\ \boldsymbol{\Sigma}_{YX} \in \mathbb{R}^{p_y \times p_x} & | & \boldsymbol{\Sigma}_{YY} \in \mathbb{R}^{p_y \times p_y} \end{bmatrix}$$

• Assuming centered data, the blocks in the covariance matrix can be estimated from observed data sets $X \in \mathbb{R}^{n \times p_x}$, $Y \in \mathbb{R}^{n \times p_y}$:

$$\mathsf{Z} \approx \frac{1}{n} \begin{bmatrix} X^t X & | & X^t Y \\ Y^t X & | & Y^t Y \end{bmatrix}$$

CCA: Setting

• Correlation $(x, y) = \frac{\text{covariance}(x, y)}{\text{standard deviation}(x) \cdot \text{standard deviation}(y)}$

$$\rho = cor(x, y) = \frac{cov(x, y)}{\sigma(x)\sigma(y)}$$

Sample correlation:

$$\rho = \frac{\sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y})^{t}}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}} \stackrel{\text{centered observations}}{=} \frac{\boldsymbol{x}^{t} \boldsymbol{y}}{\sqrt{\boldsymbol{x}^{t} \boldsymbol{x}} \sqrt{\boldsymbol{y}^{t} \boldsymbol{y}}}.$$

- Want to find maximally correlated 1D-projections $x^t a$ and $y^t b$.
- Projected covariance: $cov(\mathbf{x}^t \mathbf{a}, \mathbf{y}^t \mathbf{b}) \stackrel{\text{zero means}}{=} \mathbf{a}^t \Sigma_{XY} \mathbf{b}$.

• Define
$$\boldsymbol{c} = \Sigma_{XX}^{\frac{1}{2}} \boldsymbol{a}, \ \boldsymbol{d} = \Sigma_{YY}^{\frac{1}{2}} \boldsymbol{b}.$$

• Thus, the projected correlation coefficient is: $\rho = \frac{c^t \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}} d}{\sqrt{c^t c} \sqrt{d^t d}}$.

イロト 不得 トイヨト イヨト 三日

CCA: Setting

• By the Cauchy-Schwarz inequality $(\mathbf{x}^t \mathbf{y} \le \|\mathbf{x}\| \cdot \|\mathbf{y}\|)$, we have

$$\begin{pmatrix} \boldsymbol{c}^{t} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}}^{-\frac{1}{2}}}_{\boldsymbol{H}} \end{pmatrix} \boldsymbol{d} \leq \begin{pmatrix} \boldsymbol{c}^{t} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}}^{-\frac{1}{2}}}_{\boldsymbol{G}:=\boldsymbol{H}\boldsymbol{H}^{t}} \boldsymbol{c} \end{pmatrix}^{\frac{1}{2}} (\boldsymbol{d}^{t}\boldsymbol{d})^{\frac{1}{2}}, \\ \rho \leq \frac{(\boldsymbol{c}^{t}\boldsymbol{G}\boldsymbol{c})^{\frac{1}{2}}}{(\boldsymbol{c}^{t}\boldsymbol{c})^{\frac{1}{2}}}, \\ \rho^{2} \leq \frac{\boldsymbol{c}^{t}\boldsymbol{G}\boldsymbol{c}}{\boldsymbol{c}^{t}\boldsymbol{c}}. \end{cases}$$

- Equality: vectors **d** and $\sum_{YY}^{-\frac{1}{2}} \sum_{YX} \sum_{XX}^{-\frac{1}{2}} c$ are collinear.
- Maximum: c is the eigenvector with the maximum eigenvalue of $G := \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-1} \sum_{YX} \sum_{XX}^{-\frac{1}{2}}$. Subsequent pairs \rightsquigarrow using eigenvalues of decreasing magnitudes.

• Collinearity:
$$\boldsymbol{d} \propto \Sigma_{YY}^{-\frac{1}{2}} \Sigma_{YX} \Sigma_{XX}^{-\frac{1}{2}} \boldsymbol{c}$$

• Transform back to original variables $\boldsymbol{a} = \sum_{XX}^{-\frac{1}{2}} \boldsymbol{c}, \ \boldsymbol{b} = \sum_{YY}^{-\frac{1}{2}} \boldsymbol{d}.$

Pixels That Sound [Kidron, Schechner, Elad, 2005]

"People and animals fuse auditory and visual information to obtain robust perception. A particular benefit of such cross-modal analysis is the ability to localize visual events associated with sound sources. We aim to achieve this using computer-vision aided by a single microphone".

https://webee.technion.ac.il/ yoav/research/pixels-that-sound.html

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Probabilistic CCA

(Bach and Jordan 2005): With Gaussian priors

 $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}^{s}|\mathbf{0}, I)\mathcal{N}(\mathbf{z}^{x}|\mathbf{0}, I)\mathcal{N}(\mathbf{z}^{y}|\mathbf{0}, I),$

the MLE in the two-view FA model is equivalent to classical CCA (up to rotation and scaling).

From figure 12.19 in K. Murphy: Machine Learning. MIT Press 2012.

Probabilistic CCA: Essential Model Structure

Shared z^{S} decorrelates the two views (x, y):

$$egin{array}{rcl} oldsymbol{x} &\in & \mathbb{R}^p, \ oldsymbol{y} \in \mathbb{R}^q \ oldsymbol{z}^{\mathcal{S}} &\sim & \mathcal{N}(oldsymbol{z}^s | oldsymbol{0}, I) \ (oldsymbol{x}, oldsymbol{y}) | oldsymbol{z} &\sim & \mathcal{N}_{p+q}(oldsymbol{\mu}_z, \Sigma) \ \Sigma &= & egin{pmatrix} \Sigma_x & 0 \ 0 & \Sigma_y \end{pmatrix} \end{array}$$

• • = • • = •

Further connections

- If y is a discrete class label → CCA is (essentially) equivalent to Linear Discriminant Analysis (LDA), see (Hastie et al. 1994).
- Arbitrary y ~>> CCA is (essentially) equivalent to the Gaussian Information Bottleneck (Chechik et al. 2005)
 - Basic idea: compress x into compact latent representation while preserving information about y.
 - Information theoretic motivation:
 Find encoding distribution p(z|x) by minimizing

 $l(\mathbf{x}; \mathbf{z}) - \beta l(\mathbf{z}; \mathbf{y})$

where $\beta \ge 0$ is some parameter controlling the trade-off between compression and predictive accuracy.

Arbitrary y, discrete shared latent z^s
 → dependency-seeking clustering (Klami and Kaski 2008): find clusters that "explain" the dependency between the two views.

イロト 不得 トイヨト イヨト 二日