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Chapter 10: Linear latent variable models
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Figure 12.1 in K. Murphy: Machine Learning. MIT Press 2012.
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Factor analysis

One problem with mixture models: only a
single latent variable. Each observation can
only come from one of K prototypes.
Alternative: z i ∈ Rk . Gaussian prior:

p(z i) = N (z i |µ0, Σ0)
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For observations x i ∈ Rp , we may use a Gaussian likelihood.
As in linear regression, we assume the mean is a linear function:

p(x i |z i , θ) = N (W z i + µ, Ψ),
W : factor loading matrix, and Ψ: covariance matrix.
We take Ψ to be diagonal, since the whole point of the model is to
“force” zi to explain the correlation.
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Factor analysis: generative process

Generative process (k = 1, p = 2, diagonal Ψ):
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Figure 12.1 in K. Murphy: Machine Learning. MIT Press 2012.

We take an isotropic Gaussian “spray can” and slide it along the 1d line
defined by wzi + µ. This induces a correlated Gaussian in 2d.
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FA is a low rank parameterization of an MVN

The induced marginal distribution p(x i |θ) is Gaussian:

p(x i |θ) =
∫

N (x i , W z i + µ, Ψ)N (z i |µ0, Σ0) dz i ,

= N (x i |W µ0 + µ, Ψ + W Σ0W t)
We can set µ0 = 0 without loss of generality (absorb W µ0 into µ).
Similarly, we can set Σ0 = I using W̃ = W Σ−1/2

0 .
Covariance structure:

cov [x|θ] = (W Σ−1/2
0 )Σ0(W Σ−1/2

0 )t + Ψ = WW t + Ψ.

We thus see that FA approximates the covariance matrix of x using a
low-rank decomposition:

C := cov [x] = WW t + Ψ.

Only O(p · k) parameters ⇝ compromise between full covariance with
O(p2) params, and a diagonal covariance O(p) params.
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Inference of the latent factors

We hope that the latent factors z will reveal something interesting
about the data ⇝ compute posterior over the latent variables:

p(z i |x i , θ) = N (z i |mi , Σ)
Σ = (I + W tΨ−1W )−1

mi = ΣW tΨ−1x i

The posterior means mi are called the
latent scores, or latent factors.
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Example

Example from (Shalizi 2009). p = 11 variables and n = 387 cases
describing aspects of cars: engine size, #(cylinders), miles per gallon
(MPG), price, etc.
Fit a p = 2 dim model. Plot mi scores as points in R2.
To get a better understanding of the “meaning” of the latent factors,
project unit vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc. into
the low dimensional space (blue lines)
Horizontal axis represents price, corresponding to the features labeled
“dealer” and “retail”, with expensive cars on the right. Vertical axis
represents fuel efficiency (measured in terms of MPG) versus size:
heavy vehicles are less efficient and are higher up, whereas light
vehicles are more efficient and are lower down.
Verify by finding the closest exemplars in the training set.
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Example
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Figure 12.2 in K. Murphy: Machine Learning. MIT Press 2012.
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Special Cases: PCA and CCA

Covariance matrix Ψ = σ2I ⇝ (probabilistic) PCA.
Two-view version involving x and y ⇝ CCA.
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From figure 12.19 in K. Murphy: Machine Learning. MIT Press 2012.
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PCA and dimensionality reduction

Given n data points in p dimensions:

X =


− x1 −
− x2 −

−
... −

− xn −

 ∈ Rn×p

Want to reduce dimensionality from p to k. Choose k directions
w1, . . . , wk , arrange them as columns in matrix W :

W =
[
w1 w2 . . . wk

]
∈ Rp×k

For each w j , compute similarity zj = w t
j x, j = 1 . . . k.

Project x down to z = (z1, . . . , zk)t = W tx. How to choose W ?
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Encoding–decoding model

The projection matrix W serves two functions:
Encode: z = W tx, z ∈ Rk , zj = w t

j x.
▶ The vectors w j form a basis of the projected space.
▶ We will require that this basis is orthonormal, i.e. W tW = I.

Decode: x̃ = W z =
∑k

j=1 zjw j , x̃ ∈ Rp.
▶ If k = p, the above orthonormality condition implies W t = W −1,

and encoding can be undone without loss of information.
▶ If k < p, we use the pseudo-inverse
⇝ the reconstruction error will be nonzero.

Above we assumed that the origin of the coordinate system is in the
sample mean, i.e.

∑
i x i = 0.
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Principal Component Analysis (PCA)
In the general case, we want the reconstruction error ∥x − x̃∥ to be small.
Objective: minimize minW ∈Rp×k : W tW =I

∑n
i=1 ∥x i − WW tx i∥2
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Finding the principal components

Projection vectors are orthogonal ⇝ can treat them separately:

min
w : ∥w∥=1

∑n
i=1

∥x i − ww tx i∥2

∑
i
∥x i − ww tx i∥2 =

n∑
i=1

[xt
i x i − 2xt

i ww tx i + xt
i ww tw︸ ︷︷ ︸

=1

w tx i ]

=
∑

i
[xt

i x i − xt
i ww tx i ]

=
∑

i
xt

i x i − w t
n∑

i=1
x ixt

i w

=
∑

i
xt

i x i︸ ︷︷ ︸
const.

− w tX tXw .
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Finding the principal components

Want to maximize w tX tXw under the constraint ∥w∥ = 1
Can also maximize the ratio J(w) = w tX tXw

w tw and rescale ŵ .
Optimal projection u is the eigenvector of X tX with largest
eigenvalue (J is a Rayleigh quotient).
Note that we assumed that

∑
i x i = 0. Thus, the columns of X are

assumed to sum to zero.
⇝ compute SVD of “centered” matrix X
⇝ column vectors in W are eigenvectors of X tX
⇝ they are the principal components.
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Eigen-faces [Turk and Pentland, 1991]

p = number of pixels
Each x i ∈ Rp is a face image
xji = intensity of the j-th pixel in image i
(X t)p×n ≈ Wp×k (Z t)k×n

≈

 | |
z1 . . . zn
| |


Idea: z i more ’meaningful’ representation of i-th face than x i
Can use z i for nearest-neighbor classification
Much faster when p ≫ k.
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Probabilistic PCA

ΙΨ = σ 2

z

xW

N

i

i
µ = 0

Assuming Ψ = σ2I and centered data in the FA model
⇝ likelihood and marginal likelihood

p(x i |z i , θ) = N (W z i , σ2I),

p(x i |θ) =
∫

N (x i , W z i , σ2I)N (z i |0, I) dz i ,

= N (x i |0, σ2I + WW t)
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Probabilistic PCA

(Tipping & Bishop 1999): Maxima of the marg. likelihood given by
Ŵ = V (Λ − σ2I)

1
2 R,

where R is an arbitrary orthogonal matrix,
columns of V : first k eigenvectors of S = 1

nX tX ,
Λ: diagonal matrix of eigenvalues.
As σ2 → 0, we have Ŵ → V , as in classical PCA (for R = Λ− 1

2 ).
Projections z i : Posterior over the latent factors:

p(z i |x i , θ̂) = N (z i |m̂i , σ2F̂ −1)
F̂ = σ2I + Ŵ tŴ

mi = F̂ −1Ŵ tx i

For σ2 → 0, z i → mi and mi → V tx i ⇝ orthogonal projection of the
data onto the column space of V , as in classical PCA.
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Multiple Views: CCA

Consider paired samples from different views.
What is the dependency structure between the views ?
Standard approach: global linear dependency detected by CCA.
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Canonical Correlation Analysis [Hotelling, 1936]

Often, each data point consists of two views:
Image retrieval: for each image, have the following:

▶ X : Pixels (or other visual features) Y : Text around the image
Time series:

▶ X : Signal at time t
▶ Y : Signal at time t + 1

Two-view learning: divide features into two sets
▶ X : Features of a word/object, etc.
▶ Y : Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly.
Find projections such that projected views are maximally correlated.
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CCA vs PCA

separate PCA separate PCA

CCA
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CCA vs PCA
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CCA: Setting

Let X be a random vector ∈ Rpx and Y be a random vector ∈ Rpy

Consider the combined (p := px + py )-dimensional random vector
Z = (X , Y )t . Let its (p × p) covariance matrix be partitioned into
blocks according to:

Z =
[
ΣXX ∈ Rpx ×px | ΣXY ∈ Rpx ×py

ΣYX ∈ Rpy ×px | ΣYY ∈ Rpy ×py

]
Assuming centered data, the blocks in the covariance matrix can be
estimated from observed data sets X ∈ Rn×px , Y ∈ Rn×py :

Z ≈ 1
n

[
X tX | X tY
Y tX | Y tY

]
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CCA: Setting

Correlation(x , y) = covariance(x ,y)
standard deviation(x)· standard deviation(y)

ρ = cor(x , y) = cov(x , y)
σ(x)σ(y) .

Sample correlation:

ρ =
∑

i(xi − x̄)(yi − ȳ)t√∑
i(xi − x̄)2

√∑
i(yi − ȳ)2

centered observations= xty√
xtx

√
y ty

.

Want to find maximally correlated 1D-projections xta and y tb.
Projected covariance: cov(xta, y tb) zero means= atΣXY b.

Define c = Σ
1
2
XX a, d = Σ

1
2
YY b.

Thus, the projected correlation coefficient is: ρ = ctΣ
− 1

2
XX ΣXY Σ

− 1
2

YY d√
ctc

√
d td

.

Volker Roth (University of Basel) Machine Learning 23 / 28



CCA: Setting
By the Cauchy-Schwarz inequality (xty ≤ ∥x∥ · ∥y∥), we havec tΣ− 1

2
XX ΣXY Σ− 1

2
YY︸ ︷︷ ︸

H

d ≤

c tΣ− 1
2

XX ΣXY Σ−1
YY ΣYX Σ− 1

2
XX︸ ︷︷ ︸

G:=HHt

c


1
2 (

d td
) 1

2 ,

ρ ≤ (c tGc)
1
2

(c tc)
1
2

,

ρ2 ≤ c tGc
c tc .

Equality: vectors d and Σ− 1
2

YY ΣYX Σ− 1
2

XX c are collinear.
Maximum: c is the eigenvector with the maximum eigenvalue of
G := Σ− 1

2
XX ΣXY Σ−1

YY ΣYX Σ− 1
2

XX .
Subsequent pairs ⇝ using eigenvalues of decreasing magnitudes.

Collinearity: d ∝ Σ− 1
2

YY ΣYX Σ− 1
2

XX c

Transform back to original variables a = Σ− 1
2

XX c, b = Σ− 1
2

YY d .
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Pixels That Sound [Kidron, Schechner, Elad, 2005]
“People and animals fuse auditory and visual information to obtain robust
perception. A particular benefit of such cross-modal analysis is the ability
to localize visual events associated with sound sources. We aim to achieve
this using computer-vision aided by a single microphone”.

https://webee.technion.ac.il/ yoav/research/pixels-that-sound.html

Volker Roth (University of Basel) Machine Learning 25 / 28



Probabilistic CCA
(Bach and Jordan 2005): With Gaussian priors

p(z) = N (zs |0, I)N (zx |0, I)N (zy |0, I),

the MLE in the two-view FA model is equivalent to classical CCA
(up to rotation and scaling).

xi yi

zs
izx

i zy
i

Bx By

W x W y

N

From figure 12.19 in K. Murphy: Machine Learning. MIT Press 2012.
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Probabilistic CCA: Essential Model Structure

Shared zS decorrelates the two views (x, y):

x ∈ Rp, y ∈ Rq

zS ∼ N (zs |0, I)
(x, y)|z ∼ Np+q(µz , Σ)

Σ =
(

Σx 0
0 Σy

)
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Further connections

If y is a discrete class label ⇝ CCA is (essentially) equivalent to
Linear Discriminant Analysis (LDA), see (Hastie et al. 1994).
Arbitrary y ⇝ CCA is (essentially) equivalent to the
Gaussian Information Bottleneck (Chechik et al. 2005)

▶ Basic idea: compress x into compact latent representation while
preserving information about y .

▶ Information theoretic motivation:
Find encoding distribution p(z|x) by minimizing

I(x; z) − βI(z; y)
where β ≥ 0 is some parameter controlling the trade-off between
compression and predictive accuracy.

Arbitrary y , discrete shared latent zs

⇝ dependency-seeking clustering (Klami and Kaski 2008): find
clusters that “explain” the dependency between the two views.
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